

LHC-ATLAS 実験 Run 2 における レベル 1 ミューオントリガー改良の ハードウェアへの実装

<u>救仁郷拓人</u>, 石野 雅也, 隅田 土詞, 田代 拓也, 蔵重 久弥^A, 長谷川 誠^A, 矢ヶ部 遼太^A, 佐々木 修^B 池野 正弘^C, 前田 順平^A, 鈴木 翔太^D 他 ATLAS 日本 TGC グループ **京大, 神戸大^A, KEK^B, Open-It^C, 総研大^D**

18/9/2014

ノイズバースト

・システムビジー
 LHC-ATLAS 実験の Run 1 においてミューオンシステムでバッファーのオーバーフローが起こり、
 システムが止まってしまうことがあった。
 ・ノイズバースト

このシステムビジーが起きたイベントを取り出して解析すると、ミューオンシステム全体で大量のヒット情報があることがわかった。

通常時
第時

10²

10

Entry

JPS 2014 Autumn in Saga

480

500

460

440

520

540 560

#Level1 Accept

バーストストッパーの機能

バーストを起こしてデータをロスすることを避けるために、TGC の

トリガー判定を行う TGC SL に防御機能を追加。

Mbunch = 6

n n+1 n+2 n+3 n+4 n+5 n+6 Bunch count 1 n-1 Hit (**FIFO**) :

hit数 = 5 (if hit数 >= Nhit then Burst)

- バースト判定のスコープ Mbunch: (5bit W/R)(5bit W/R) バースト判定のスレッショルド
- Nhit:
- ・VETObunch:(16bit R) VETOされたバンチ数 バースト回数(連続したVETOを1とする) Burstcount: (8bit R)

システムの防御は出来るがバースト時のイベントを全て VETO するので原因を調べられない。

1バーストから1イベントだけ取得し、原因を突き止めたい

2013年度秋季大会

20pSM-6 来見田

TGC 全体の情報を用いてノイズバーストの原因追求

• TGC SL での処理

TGC SL では右図のオレンジ色部分の範囲のトリガー判定を 行っているため TGC 全体の情報を調べることは出来ない

• 新 VME モジュール

TGC SL には LEMO コネクタがついていて、そこからヒット情 報を NIM 出力することが出来る。その NIM 信号を全ての TGC SL から一つのモジュールに集約することで <u>TGC 全体の情報</u>からバースト判定を行うことが出来る。

新 VME モジュールに要求される性能

新 VME モジュールにおける処理

- FPGA 内での処理のデザイン図
- Look Up Table の変更によって柔軟な処理が可能
- 76 OR と Majority 2 種類のロジックを実装

FPGA のコンフィギュレーション速度

• FPGA のコンフィギュレーション

FPGAが高性能になるにつれて、FPGAに書き込むファイルサイズも増加していく。

ファイルサイズ:10年で約10倍 Virtex II -> Kintex 7

大規模実験ではランの開始時に多数の FPGA に対してデータのダウンロードを行うために、コンフィギュレーションの速度は実験を円滑に進めるために重要な要素である。

コンフィギュレーション速度

FPGA のコンフィギュレーション方法にはいくつかあるが、ここでは VME バスを使用したものと FPGA ファームウェア書き込み用の ROM を使用した方法を比較する。

BPIの VME モジュールへの実装

- メモリを実装して FPGA データのダウンロードを行うことで パラレルに処理が可能
- SPI は多くの実装例があるが、より高速な BPI は VME モジュールに実装した例が見当たらない
- 本モジュールで実装に成功すれば、他のモジュールに対しても より高速なメモリが実装可能

JPS 2014 Autumn in Saga

モジュールの運用方法

パラメータの決定

バースト判定を行うスコープ範囲とスレッショルドの値を最適化するために、 ロジックアナライザーを使用して解析を行う。バーストという異常な状態を判 断出来るようにする。 Mbunch = 6

	•				•	→		I
Bunch count	n-1	n	n+1	n+2	n+3	n+4	n+5	n+6
Hit			0	0	0	0	0	
		hit数	= 5(i	f hit数	>= Nh	it then	Burst)	

• バースト情報の取得

バーストが起きている場合 SL によってトリガーは VETO されるが、新モジュール によって取得するイベントを決定して1バーストに1イベントだけ情報を取得する。

バーストの原因を突き止めて、根本的な解決を目指す

まとめ

- ATLAS 実験ノイズバーストの精密調査
 - ATLAS 実験のミューオンシステムで起きるノイズバースト を調査するために VME モジュールの開発を行っている
 - 必要な性能を調査し、それに見合う回路図を作成した。その図面にそった基板設計を現在業者に依頼している
 - モジュールの運用方法を具体的に検討し、決定した

モジュールを完成させて運用することで、未だ分かっていない ノイズバーストの原因を突き止める

Backup

JPS 2014 Autumn in Saga