AXEL-2010
 Introduction to Particle Accelerators

Course structure

Rende Steerenberg (BE/OP)
1 February 2010

Course structure

Some reading

\# Accelerators for Pedestrians

\# Support for this course
\# Author: Simon Baird
\# Reference: CERN-AB-Note-2007-014 (Free from the Web)
\# CERN Accelerator School
\# Fifth General Accelerator Physics Course
\# Editor: S. Turner
\# Reference: CERN 94-01 (volume I \& II) (Free from the Web)
\# An Introduction to Particle Accelerators
\# Author: Edmund Wilson
\# Reference: ISBN 0-19-850829-8 (CERN Book shop)
\# Particle Accelerator Physics (3rd edition)
\# Author: Helmut Widemann
\# Reference: ISBN 978-3-540-49043-2 (CERN Book shop)

AXEL-2010
 Introduction to Particle Accelerators

Review of basic mathematics:
\checkmark Vectors \& Matrices
\checkmark Differential equations

Rende Steerenberg (BE/OP)
19 January 2010

Coordinate Systems

\# A scalar is a number: $1,2, . .-7,12.5$, etc.....
\# A vector has 2 or more quantities associated with it.

r is the length of the vector

$$
r=\sqrt{x^{2}+y^{2}}
$$

R. Steerenberg, 01-Feb-2010

AXEL - 2010

Moving for one Point to Another

\# To move from one point (A) to any other point (B) one needs control of both Length and Direction.

2 equations needed!!!
R. Steerenberg, 01-Feb-2010

Defining Matrices (1)

\# So, we have:

$$
x_{\text {new }}=a x_{o l d}+b y_{o l d}
$$

$$
y_{\text {new }}=c x_{\text {old }}+d y_{\text {old }}
$$

\# Let's write this as one equation: $\quad \bar{B}=M \bar{A}$
\# \bar{A} and \bar{B} are Vectors or Matrices

$$
\begin{aligned}
& \underset{y_{\text {new }}}{\text { Rows }}\binom{x_{\text {new }}}{y_{\text {en }}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{\text {old }}}{y_{\text {old }}} \\
& \underset{\text { Matrices }}{1 \text { column }}
\end{aligned}
$$

\# \bar{A} and \bar{B} have 2 rows and 1 column
\# M is a Matrix and has 2 rows and 2 columns

Defining Matrices (2)

\# This means that:

$$
\left.\begin{array}{l}
x_{\text {neen }}=a x_{o l d}+b y_{o l d} \\
y_{\text {new }}=c x_{o d t}+d y_{o d}
\end{array}\right\} \text { Equals }\left\{\binom{x_{\text {neen }}}{y_{\text {new }}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{o d t}}{y_{o d t}}\right.
$$

\# This defines the rules for matrix multiplication.
\# More generally we can thus say that...

$$
\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

which is be equal to:
$i=a e+b g, j=a f+b h, k=c e+d g, l=c f+d h$

Applying Matrices

\# Let's use what we just learned and move a point around:

\# M1 transforms 1 to 2
\# M2 transforms 2 to 3
$\binom{x_{2}}{y_{2}}=M 1\binom{x_{1}}{y_{1}}$
\# This defines M3=M2M1
$\binom{x_{3}}{y_{3}}=M 2\binom{x_{2}}{y_{2}}=M 2 . M 1\binom{x_{1}}{y_{1}}$
$\binom{x_{3}}{y_{3}}=M 3\binom{x_{1}}{y_{1}}$
R. Steerenberg, 01-Feb-2010

Matrices \& Accelerators

\# But... how does this relate to our accelerators?
\# We use matrices to describe the various magnetic elements in our accelerator.
r The x and y co-ordinates are the position and angle of each individual particle.
r If we know the position and angle of any particle at one point, then to calculate its position and angle at another point we multiply all the matrices describing the magnetic elements between the two points to give a single matrix
\# So, this means that now we are able to calculate the final co-ordinates for any initial pair of particle coordinates, provided all the element matrices are known.

Unit Matrix

\# There is a special matrix that when multiplied with an initial point will result in the same final point.
\# Unit matrix : $\binom{x_{\text {neo }}}{y_{\text {new }}}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x_{\text {old }}}{y_{\text {old }}}$
\# The result is : $\left\{x_{\text {new }}=X_{\text {old }}\right.$
$Y_{\text {new }}=Y_{\text {old }}$
\# Therefore:
The Unit matrix has no effect on x and y

Going back for one Point to Another

\# What if we want to go back from a final point to the corresponding initial point?
\# We saw that: $\binom{x_{\text {new }}}{y_{\text {new }}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{\text {old }}}{y_{\text {old }}}$ or $\bar{B}=M \bar{A}$
\# For the reverse we need another matrix M^{-1}

$$
\bar{A}=M^{-1} \bar{B}
$$

\# Combining the two matrices M and M^{-1} we can write:

$$
\bar{B}=M M^{-1} \bar{B}
$$

\# The combination of M and M^{-1} does have no effect thus:

$$
M M^{-1}=\text { Unit Matrix }
$$

\# M^{-1} is the "inverse" or "reciprocal" matrix of M.

Inverse or Reciprocal Matrix

\# If we have: $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, which is a 2×2 matrix.
\# Then the inverse matrix is calculated by:

$$
M^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

\# The term ($a d-b c$) is called the determinate, which is just a number (scalar).

An Accelerator Related Example

\# Changing the current in two sets of quadrupole magnets (F \& D) changes the horizontal and vertical tunes $\left(Q_{h} \& Q_{v}\right)$.
\# This can be expressed by the following matrix relationship:

$$
\binom{\Delta Q_{h}}{\Delta Q_{v}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\Delta I_{F}}{\Delta I_{D}} \text { or } \overline{\Delta Q}=M \overline{\Delta I}
$$

\# Change I_{F} then I_{D} and measure the changes in Q_{h} and Q_{v}
\# Calculate the matrix M
\# Calculate the inverse matrix M^{-1}
\# Use now M^{-1} to calculate the current changes ($G I_{F}$ and $G I_{D}$) needed for any required change in tune $\left(G Q_{h}\right.$ and $\left.G Q_{v}\right)$.

$$
\overline{\Delta I}=M^{-1} \overline{\Delta Q}
$$

Differential Equations

\# Let's use a pendulum as an example.
\# The length of the Pendulum is L.
\# It has mass M attached to it.
\# It moves back and forth under the influence of gravity.

\# Let's try to find an equation that describes the motion the mass M makes.
\# This equation will be a Differential Equation

Establish a Differential Equation

\# The distance from the centre $=\underline{L t}($ since t is small $)$

Restoring force due to gravity $=-M g \sin \theta$ (force opposes motion)

$$
\frac{d^{2}(\theta)}{d t^{2}}+\left(\frac{g}{L}\right) \theta=0
$$

tis small
L is constant

Solving the Differential Equation (1)

 \# This differential equation describes the motion of a pendulum at small amplitudes.
\# Find a solution......
Try a good "guess"...... $\theta=A \cos (\omega t)$ Oscillation amplitude
\# Differentiate our guess (twice)

$$
\frac{d(\theta)}{d t}=-A \omega \sin (\omega t) \quad \text { And } \quad \frac{d^{2}(\theta)}{d t^{2}}=-A \omega^{2} \cos (\omega t)
$$

\# Put this and our "guess" back in the original Differential equation.

$$
-\omega^{2} \cos (\omega t)+\left(\frac{g}{L}\right) \cos (\omega t)=0
$$

Solving the Differential Equation (2)

\# So we have to find the solution for the following equation:

$$
-\omega^{2} \cos (\omega t)+\left(\frac{g}{L}\right) \cos (\omega t)=0
$$

\# Solving this equation gives: $\omega=\sqrt{\frac{g}{L}}$
\# The final solution of our differential equation, describing the motion of a pendulum is as we expected:

Oscillation amplitude
Oscillation frequency

Differential Equation \& Accelerators

\# This is the kind of differential equation that will be used to describe the motion of the particles as they move around our accelerator.
\# As we can see, the solution describes:

oscillatory motion

\# For any system, where the restoring force is proportional to the displacement, the solution for the displacement will be of the form:

$$
x=x_{0} \cos (\omega t)
$$

\# The velocity will be given by:

$$
\frac{d x}{d t}=-x_{0} \omega \sin (\omega t)
$$

Visualizing the solution

\# Plot the velocity as a function of displacement:
\# $x=x_{0} \cos (\omega t)$
$\# \frac{d x}{d t}=-x_{0} \omega \sin (\omega t)$
\# It is an ellipse.

\# As ωt advances by 2π it repeats itself.
\# This continues for $(\omega t+k 2 \pi)$, with $k=0, \pm 1, \pm 2, . . .$. etc

The solution \& Accelerators

\# How does such a result relate to our accelerator or beam parameters?

\# $\varphi=\omega t$ is called the phase angle and the ellipse is drawn in the so called phase space diagram.

+ X-axis is normally displacement (position or time).
- Y -axis is the phase angle or energy.

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Transverse optics 1:

 \checkmark Relativity, Energy \& Units \checkmark Accelerator co-ordinates \checkmark Magnets and their configurations \checkmark Hill's equation$$
\begin{gathered}
\text { Rende Steerenberg (BE/OP) } \\
01 \text { February } 2010
\end{gathered}
$$

CERN Accelerators

Relativity

Energy \& Momentum

\# Einstein's relativity formula: $E=m c^{2}$
\# For a mass at rest this will be:

\# Define: $\gamma=\frac{E}{E}$ As being the ratio between the total energy and the rest energy
\# Then the mass of a moving particle is: $m=\gamma m_{0}$
\# Define: $\beta=\frac{v}{c}$, then we can write: $\beta=\frac{m v c}{m c^{2}}$
\# $p=m v$,which is always true and gives:

$$
\beta=\frac{p c}{E} \quad \text { or } \quad p=\frac{E \beta}{c}
$$

Units: Energy \& Momentum (1)

\# Einstein's relativity formula: We all might know the units Joules and Newton meter but here we are talking about eV...!?
\# If we push a block over a distance of 1 meter with a force of 1 Newton, we use 1 Joule of energy.
\# Thus: $1 \mathrm{Nm}=1$ Joule
\# The energy acquired by an electron in a potential of 1 Volt is defined as being 1 eV
\# 1 eV is 1 elementary charge 'pushed' by 1 Volt.
\# Thus: $1 \mathrm{eV}=1.6 \times 10^{-19}$ Joules
\# The unit eV is too small to be used currently, we use: $1 \mathrm{keV}=10^{3} \mathrm{eV} ; 1 \mathrm{MeV}=10^{6} \mathrm{eV} ; 1 \mathrm{GeV}=10^{9} ; 1 \mathrm{TeV}=10^{12}$

Units: Energy \& Momentum (2)

\# However:

Momentum
\# Therefore the units for momentum are $\mathrm{GeV} / \mathrm{c}$...etc.

Attention:
when $\beta=1$ energy and momentum are equal when $\beta<1$ the energy and momentum are not equal

Units: Example PS injection

\checkmark Kinetic energy at injection $E_{\text {kinetic }}=1.4 \mathrm{GeV}$
\checkmark Proton rest energy $E_{0}=938.27 \mathrm{MeV}$
\checkmark The total energy is then: $E=E_{\text {kinetic }}+E_{0}=2.34 \mathrm{GeV}$
\checkmark We know that $\gamma=\frac{E}{E_{0}}$, which gives $\gamma=2.4921$
\checkmark We can derive $\beta=\sqrt{1-\frac{1}{\gamma^{2}}}$, which gives $\beta=0.91597$
\checkmark Using $p=\frac{E \beta}{c}$ we get $\mathrm{p}=2.14 \mathrm{GeV} / \mathrm{c}$
\checkmark In this case: Energy \neq Momer um

Accelerator co-ordinates

\checkmark We can speak about a:
Rotating Cartesian Co-ordinate System

Magnetic rigidity

\checkmark The force evB on a charged particle moving with velocity \underline{v} in a dipole field of strength \underline{B} is equal to it's mass multiplied by it's acceleration towards the centre of it's circular path.

$\checkmark \underline{B} \rho$ is called the magnetic rigidity, and if we put in all the correct units we get:
$B p=33.356 \cdot p[K G \cdot m]=3.3356 \cdot p[T \cdot m]$ (if p is in $[\mathrm{GeV} / \mathrm{c}]$)

Some LHC figures

\checkmark LHC circumference $=26658.883 \mathrm{~m}$
\checkmark Therefore the radius $r=4242.9 \mathrm{~m}$
\checkmark There are 1232 main dipoles to make 360°
\checkmark This means that each dipole deviates the beam by only 0.29°
\checkmark The dipole length $=14.3 \mathrm{~m}$
\checkmark The total dipole length is thus 17617.6 m , which occupies 66.09 \% of the total circumference
\checkmark The bending radius ρ is therefore $\checkmark \rho=0.6609 \times 4242.9 \mathrm{~m} \rightarrow \rho=2804 \mathrm{~m}$

Dipole magnet

\checkmark A dipole with a uniform dipolar field deviates a particle by an angle θ.
\checkmark The deviation angle θ depends on the length L and the magnetic field B.
\checkmark The angle θ can be calculated:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{L}{2 \rho}=\frac{1}{2(B \rho)}
$$

\checkmark If t is small:

$$
\sin \left(\frac{\theta}{2}\right)=\frac{\theta}{2}
$$

\checkmark So we can write:

$$
\theta=\frac{L B}{(B \rho)}
$$

Two particles in a dipole field

\checkmark What happens with two particles that travel in a dipole field with different initial angles, but with equal initial position and equal momentum ?

--- - Particle B

\checkmark Assume that $\mathrm{B} \rho$ is the same for both particles.
\checkmark Lets unfold these circles......

The 2 trajectories unfolded

\checkmark The horizontal displacement of particle B with respect to particle A.

\checkmark Particle B oscillates around particle A.
\checkmark This type of oscillation forms the basis of all transverse motion in an accelerator.
\checkmark It is called 'Betatron Oscillation'

'Stable' or 'unstable' motion?

\checkmark Since the horizontal trajectories close we can say that the horizontal motion in our simplified accelerator with only a horizontal dipole field is 'stable'
\checkmark What can we say about the vertical motion in the same simplified accelerator? Is it 'stable' or 'unstable' and why?
\checkmark What can we do to make this motion stable?
\checkmark We need some element that 'focuses' the particles back to the reference trajectory.
\checkmark This extra focusing can be done using:

Quadrupole magnets

Quadrupole Magnet

\checkmark A Quadrupole has 4 poles, 2 north and 2 south
\checkmark They are symmetrically arranged around the centre of the magnet
\checkmark There is no magnetic field along the central axis.

Magnetic field

Hyperbolic contour $x \cdot y=$ constant

Quadrupole fields

Types of quadrupoles

\checkmark Rotating this magnet by 90° will give a:

Defocusing Quadrupole (QD)

Focusing and Stable motion

\checkmark Using a combination of focusing (QF) and defocusing (QD) quadrupoles solves our problem of 'unstable' vertical motion.
\checkmark It will keep the beams focused in both planes when the position in the accelerator, type and strength of the quadrupoles are well chosen.
\checkmark By now our accelerator is composed of:
\checkmark Dipoles, constrain the beam to some closed path (orbit).
\checkmark Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions.
\checkmark A combination of focusing and defocusing sections that is very often used is the so called: FODO lattice.
\checkmark This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by nonfocusing drift spaces.

FODO cell

\checkmark The 'FODO' cell is defined as follows:

The mechanical equivalent

\checkmark The gutter below illustrates how the particles in our accelerator behave due to the quadrupolar fields.
\checkmark Whenever a particle beam diverges too far away from the central orbit the quadrupoles focus them back towards the central orbit.
\checkmark How can we represent the focusing gradient of a quadrupole in this mechanical equi ent?

The particle characterized

\checkmark A particle during its transverse motion in our accelerator is characterized by:
\checkmark Position or displacement from the central orbit.
\checkmark Angle with respect to the central orbit.

\checkmark This is a motion with a constant restoring force, like in the first lecture on differential equations, with the zndulum

Hill's equation

\checkmark These betatron oscillations exist in both horizontal and vertical planes.
\checkmark The number of betatron oscillations per turn is called the betatron tune and is defined as $Q x$ and $Q y$.
\checkmark Hill's equation describes this motion mathematically

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark If the restoring force, K is constant in ' s ' then this is just a Simple Harmonic Motion.
\checkmark 's' is the longitudinal displacement around the accelerator.

Hill's equation (2)

\checkmark In a real accelerator K varies strongly with 's'.
\checkmark Therefore we need to solve Hill's equation for K varying as a function of 's'

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark What did we conclude on the mechanical equivalent concerning the shape of the gutter......?
\checkmark How is this related to Hill's equation......?

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Transverse optics 2:
\checkmark Hill's equation
\checkmark Phase Space
\checkmark Emittance \& Acceptance
\checkmark Matrix formalism

Hill's equation

\checkmark The betatron oscillations exist in both horizontal and vertical planes.
\checkmark The number of betatron oscillations per turn is called the betatron tune and is defined as $Q x$ and Qy.
\checkmark Hill's equation describes this motion mathematically

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark If the restoring force, K is constant in 's' then this is just a Simple Harmonic Motion.
\checkmark 's' is the longitudinal displacement around the accelerator.

Hill's equation (2)

\checkmark In a real accelerator K varies strongly with 's'.
\checkmark Therefore we need to solve Hill's equation for K varying as a function of ' s '

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark Remember what we concluded on the mechanical equivalent concerning the shape of the gutter..
\checkmark The phase advance and the amplitude modulation of the oscillation are determined by the shape of the gutter.
\checkmark The overall oscillation amplitude will depend on the initial conditions, i.e. how the motion of the ball started.

Solution of Hill's equation (1)

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark Remember, this is a $2^{\text {nd }}$ order differential equation.
\checkmark In order to solve it lets try to guess a solution:

$$
x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)
$$

$\checkmark \varepsilon$ and ϕ_{0} are constants, which depend on the initial conditions.
$\checkmark \beta(s)=$ the amplitude modulation due to the changing focusing strength.
$\checkmark \phi(s)=$ the phase advance, which also depends on focusing strength.

Solution of Hill's equation (2)

\checkmark Define some parameters
\checkmark...and let $\phi=\left(\phi(s)+\phi_{0}\right)$
$x=\sqrt{\varepsilon .} \omega(\mathrm{s}) \cos \phi$
Remember ϕ is still a function of s

\checkmark In order/ to solve Hill's equation we differentiate our guess, which results in:

$$
x^{\prime}=\sqrt{\varepsilon} \frac{d \omega}{d s} \cos \phi-\sqrt{\varepsilon} \omega \phi^{\prime} \sin \phi
$$

\checkmark......and differentiating a second time gives:

$$
x^{\prime \prime}=\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi
$$

\checkmark Now we need to substitute these results in the original equation.

Solution of Hill's equation (3)

\checkmark So we need to substitute $x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)$ and its second derivative

$$
x^{\prime \prime}=\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \cos \phi
$$

into our initial differential equation

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark This gives:

$$
\begin{gathered}
\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \cos \phi \\
+K(s) \sqrt{\varepsilon} \omega \cos \phi=0
\end{gathered}
$$

Sine and Cosine are orthogonal and will never be 0 at the same time
R. Steerenberg, 02-Feb-2010

Solution of Hill's equation (4)

$$
\begin{gathered}
\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi \\
+K(s) \sqrt{\varepsilon} \omega \cos \phi=0
\end{gathered}
$$

\checkmark Using the 'Sin' terms $\longrightarrow 2 \omega^{\prime} \phi^{\prime}+\omega \phi^{\prime \prime}=0 \longrightarrow 2 \omega \omega^{\prime} \phi^{\prime}+\omega^{2} \phi^{\prime \prime}=0$
\checkmark We defined $\beta=\omega^{2}$, which after differentiating gives $\beta^{\prime}=2 \omega \omega^{\prime}$
\checkmark Combining $2 \omega \omega^{\prime} \phi^{\prime}+\omega^{2} \phi^{\prime \prime}=0$ and $\beta^{\prime}=2 \omega \omega^{\prime}$ gives:

$$
\beta^{\prime} \phi^{\prime}+\beta \phi^{\prime \prime}=\left(\beta \phi^{\prime}\right)^{\prime}=0
$$

$$
\frac{d \beta}{d s}=\frac{d \beta}{d \omega} \frac{d \omega}{d s}
$$

\checkmark Which is the case as: $\beta \phi^{\prime}=$ const.$=1$ since

$$
\phi^{\prime}=\frac{d \phi}{d s}=\frac{1}{\beta}
$$

\checkmark So our guess seems to be correct

Solution of Hill's equation (5)

\checkmark Since our solution was correct we have the following for x :

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi
$$

$$
\frac{d \omega}{d s}=\frac{\beta^{\prime}}{2 \omega}=-\frac{\alpha}{\sqrt{\beta}}
$$

\checkmark For x^{\prime} we have now: $x^{\prime}=\sqrt{\varepsilon} \frac{d \omega}{d s} \cos \phi-\sqrt{\varepsilon} \omega \phi^{\prime} \sin \phi$

$$
\omega=\sqrt{\beta}
$$

\checkmark Thus the expression for x ' finally becomes:

$$
x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

Phase Space Ellipse

\checkmark So now we have an expression for x and x^{\prime}

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi \text { and } x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

\checkmark If we plot x^{\prime} versus x as ϕ goes from 0 to 2π we get an ellipse, which is called the phase space ellipse.

$$
\phi=3 \pi / 2
$$

Phase Space Ellipse (2)

\checkmark As we move around the machine the shape of the ellipse will change as β changes under the influence of the quadrupoles
\checkmark However the area of the ellipse ($\pi \varepsilon$) does not change

$\checkmark \underline{\varepsilon}$ is called the transverse emittance and is determined by the initial beam conditions.
\checkmark The units are meter-radians, but in practice we use more often $\mathrm{mm} \cdot \mathrm{mrad}$.

Phase Space Ellipse (3)

\checkmark For each point along the machine the ellipse has a particular orientation, but the area remains the same

Phase Space Ellipse (4)

\checkmark The projection of the ellipse on the x-axis gives the Physical transverse beam size.
\checkmark Therefore the variation of $\beta(s)$ around the machine will tell us how the transverse beam size will vary.

Emittance \& Acceptance

\checkmark To be rigorous we should define the emittance slightly differently.
\checkmark Observe all the particles at a single position on one turn and measure both their position and angle.
\checkmark This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x^{\prime}.

\checkmark The emittance is the area of the ellipse, which contains all, or a defined percentage, of the particles.
\checkmark The acceptance is the maximum area of the ellipse, which the emittance can attain without losing particles.

Emittance measurement

Matrix Formalism

\checkmark Lets represent the particles transverse position and angle by a column matrix.

$$
\binom{x}{x^{\prime}}
$$

\checkmark As the particle moves around the machine the values for x and x^{\prime} will vary under influence of the dipoles, quadrupoles and drift spaces.
\checkmark These modifications due to the different types of magnets can be expressed by a Transport Matrix M
\checkmark If we know x_{1} and x_{1}^{\prime} at some point s_{1} then we can calculate its position and angle after the next magnet at position s_{2} using:

$$
\binom{x\left(s_{2}\right)}{x\left(s_{2}\right)^{\prime}}=M\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}
$$

How to apply the formalism

\checkmark If we want to know how a particle behaves in our machine as it moves around using the matrix formalism, we need to:
\checkmark Split our machine into separate elements as dipoles, focusing and defocusing quadrupoles, and drift spaces.
\checkmark Find the matrices for all of these components
\checkmark Multiply them all together
\checkmark Calculate what happens to an individual particle as it makes one or more turns around the machine

Matrix for a drift space

\checkmark A drift space contains no magnetic field.
\checkmark A drift space has length L.

Matrix for a quadrupole

\checkmark A quadrupole of length L.

Remember $\mathbf{B}_{\mathbf{y}} \propto \mathbf{x}$ and the deflection due to the magnetic field is: $\frac{L B_{y}}{(B \rho)}=-\frac{L K}{(B \rho)} \cdot x$

Matrix for a quadrupole (2)

\checkmark We found:

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{L K}{(B \rho)} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

\checkmark Define the focal length of the quadrupole as $f=\frac{(B \rho)}{K L}$

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

How now further?

\checkmark For our purpose we will treat dipoles as simple drift spaces as they bend all the particles by the same amount.
\checkmark We have Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark These matrices describe the real discrete focusing of our quadrupoles.
\checkmark Now we must combine these matrices with our solution to Hill's equation, since they describe the same motion......

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Lattice calculations:
 \checkmark Lattices
 \checkmark Tune Calculations
 \checkmark Dispersion
 \checkmark Momentum Compaction
 \checkmark Chromaticity
 \checkmark Sextupoles

A quick recap.......

\checkmark We solved Hill's equation, which led us to the definition of transverse emittance and allowed us to describe particle motion in transverse phase space in terms of $\beta \rightarrow a \in$ etc...
\checkmark We constructed the Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark Now we must combine these matrices with the solution of Hill's equation to evaluate $\beta \in a \quad a \in d$ etc...

Matrices \& Hill's equation

\checkmark We can multiply the matrices of our drift spaces and quadrupoles together to form a transport matrix that describes a larger section of our accelerator.
\checkmark These matrices will move our particle from one point $\left(x\left(s_{1}\right), x^{\prime}\left(s_{1}\right)\right)$ on our phase space plot to another ($x\left(s_{2}\right), x^{\prime}\left(s_{2}\right)$), as shown in the matrix equation below.

$$
\binom{x\left(s_{2}\right)}{x^{\prime}\left(s_{2}\right)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x\left(s_{1}\right)}{x^{\prime}\left(s_{1}\right)}
$$

\checkmark The elements of this matrix are fixed by the elements through which the particles pass from point s_{1} to point s_{2}.
\checkmark However, we can also express (x, x^{\prime}) as solutions of Hill's equation.

$$
x=\sqrt{\varepsilon . \beta} \cos \phi \quad \text { and } \quad x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

Matrices \& Hill's equation (2)

\checkmark Assume that our transport matrix describes a complete turn around the machine.
\checkmark Therefore: $\beta\left(s_{2}\right)=\beta\left(s_{1}\right)$
\checkmark Let O be the change in betatron phase over one complete turn.
\checkmark Then we get for $x\left(s_{2}\right)$:

$$
x\left(s_{2}\right)=\sqrt{\varepsilon \cdot \beta} \cos (\mu+\phi)=a \sqrt{\varepsilon \cdot \beta} \cos \phi-b \alpha \sqrt{\varepsilon / \beta} \cos \phi-b \sqrt{\varepsilon / \beta} \sin \phi
$$

Matrices \& Hill's equation (3)

\checkmark So, for the position x at $s 2$ we have...

$$
\sqrt{\varepsilon \cdot \beta} \cos (\mu+\phi)=a \sqrt{\varepsilon \cdot \beta} \cos \phi-b \alpha \sqrt{\varepsilon / \beta} \cos \phi-b \sqrt{\varepsilon / \beta} \sin \phi
$$

```
cos\phi}\operatorname{cos}\mu-\operatorname{sin}\phi\operatorname{sin}
```

\checkmark Equating the 'sin' terms gives:

$$
-\sqrt{\varepsilon . \beta} \sin \mu \sin \phi=-b \sqrt{\varepsilon / \beta} \sin \phi
$$

\checkmark Which leads to: $b=\beta \sin \mu$
\checkmark Equating the 'cos' terms gives:

$$
\sqrt{\varepsilon . \beta} \cos \mu \cos \phi=a \sqrt{\varepsilon . \beta} \cos \phi-\alpha \sqrt{\varepsilon \cdot \beta} \sin \mu \cos \phi
$$

\checkmark Which leads to: $a=\cos u+\alpha \sin \mu$
\checkmark We can repeat this for c and d.

Matrices \& Twiss parameters

\checkmark Remember also that O is the total betatron phase advance over one complete turn is.

$$
Q=\frac{\mu}{2 \pi}
$$

Number of betatron oscillations per turn
\checkmark Our transport matrix becomes now:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

Lattice parameters

$\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark This matrix describes one complete turn around our machine and will vary depending on the starting point (s).
\checkmark If we start at any point and multiply all of the matrices representing each element all around the machine we can calculate a, β, γ and μ for that specific point, which then will give us $\beta(s)$ and Q
\checkmark If we repeat this many times for many different initial positions (s) we can calculate our Lattice Parameters for all points around the machine.

Lattice calculations and codes

\checkmark Obviously O (or Q) is not dependent on the initial position 's', but we can calculate the change in betatron phase, dO from one element to the next.
\checkmark Computer codes like "MAD" or "Transport" vary lengths, positions and strengths of the individual elements to obtain the desired beam dimensions or envelope ' $\beta(s)^{\prime}$ ' and the desired ' Q '.
\checkmark Often a machine is made of many individual and identical sections (FODO cells). In that case we only calculate a single cell and not the whole machine, as the the functions β (s) and $\mathrm{d} \mu$ will repeat themselves for each identical section.
\checkmark The insertion section have to be calculated separately.

The $\delta(s)$ and Q relation.

$\checkmark Q=\frac{\mu}{2 \pi}$, where $\mu=\Delta \phi$ over a complete turn
\checkmark But we also found: $\frac{d \phi(s)}{d s}=\frac{1}{\beta(s)}$
Over one complete turn
\checkmark This leads to: $\quad Q=\frac{1}{2 \pi} \int^{s} \frac{d s}{\beta(s)}$
\checkmark Increasing the focusing strength decreases the size of the beam envelope (β) and increases Q and vice versa.

Tune corrections

\checkmark What happens if we change the focusing strength slightly?
\checkmark The Twiss matrix for our 'FODO' cell is given by:

$$
\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

\checkmark Add a small QF quadrupole, with strength dK and length ds.
\checkmark This will modify the 'FODO' lattice, and add a horizontal focusing term:
$\left(\begin{array}{cc}1 & 0 \\ -d k d s & 1\end{array}\right)$

$$
d k=\frac{d K}{(B \rho)}
$$

$$
f=\frac{(B \rho)}{d K d s}
$$

\checkmark The new Twiss matrix representing the modified lattice is:

$$
\left(\begin{array}{cc}
1 & 0 \\
-d k d s & 1
\end{array}\right)\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\gamma \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)
$$

Tune corrections (2)

\checkmark This gives $\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -d k d s(\cos \mu+\sin \mu)-\gamma \sin \mu & -d k d s \beta \sin \mu+\cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark This extra quadrupole will modify the phase advance μ for the FODO cell.
New phase advance $-\mu_{1}=\mu+\mathrm{d} \mu$
\checkmark If $d \mu$ is small then we can ignore changes in β
\checkmark So the new Twiss matrix is just:

$$
\left(\begin{array}{cc}
\cos \mu_{1}+\alpha \sin \mu_{1} & \beta \sin \mu_{1} \\
-\gamma \sin \mu_{1} & \cos \mu_{1}-\alpha \sin \mu_{1}
\end{array}\right)
$$

Tune corrections (3)

\checkmark These two matrices represent the same FODO cell therefore:
$\left(\begin{array}{cc}\cos \mu+\alpha \sin \mu & \beta \sin \mu \\ -d k d s(\cos \mu+\sin \mu)-\gamma \sin \mu & -d k d s \beta \sin \mu+\cos \mu-\alpha \sin \mu\end{array}\right)$
\checkmark Which equals:

$$
\left(\begin{array}{cc}
\cos \mu_{1}+\alpha \sin \mu_{1} & \beta \sin \mu_{1} \\
-\gamma \sin \mu_{1} & \cos \mu_{1}-\alpha \sin \mu_{1}
\end{array}\right)
$$

\checkmark Combining and compare the first and the fourth terms of these two matrices gives:

$$
2 \cos \mu_{1}=2 \cos \mu-\mathrm{dk} \text { ds } \beta \sin \mu
$$

Only valid for change in δ \square

Tune corrections (4)

In the horizontal plane this is a QF

$$
d \mu=\frac{1}{2} d k d s \beta \quad \text {,but: } \quad \mathrm{dQ}=\mathrm{d} \mu / 2 \pi
$$

$$
d Q h=+\frac{1}{4 \pi} d k \cdot d s . \beta h
$$

If we follow the same reasoning for both transverse planes for both QF and QD quadrupoles

Tune corrections (5)

Let $\mathbf{d k}_{\mathbf{F}}=\mathbf{d k}$ for $\mathbf{Q F}$ and $\mathbf{d k}_{\mathbf{D}}=\mathbf{d k}$ for $\mathbf{Q D}$

$$
\beta_{\mathrm{hF}}, \beta_{\mathrm{vF}}=\beta \text { at } \mathbf{Q F} \text { and } \beta_{\mathrm{hD}}, \beta_{\mathrm{vD}}=\beta \text { at } \mathbf{Q D}
$$

Then:

$$
\binom{d Q v}{d Q h}=\left(\begin{array}{ll}
\frac{1}{4 \pi} \beta_{v D} & \frac{-1}{4 \pi} \beta_{v F} \\
\frac{-1}{4 \pi} \beta_{h D} & \frac{1}{4 \pi} \beta_{h F}
\end{array}\right)\binom{d k_{D} d s}{d k_{F} d s}
$$

This matrix relates the change in the tune to the change in strength of the quadrupoles.
We can invert this matrix to calculate change in quadrupole field needed for a given change in tune

Dispersion (1)

\checkmark Until now we have assumed that our beam has no energy or momentum spread:

$$
\frac{\Delta E}{E}=0 \text { and } \frac{\Delta p}{p}=0
$$

\checkmark Different energy or momentum particles have different radii of curvature (\square) in the main dipoles.
\checkmark These particles no longer pass through the quadrupoles at the same radial position.
\checkmark Quadrupoles act as dipoles for different momentum particles.
\checkmark Closed orbits for different momentum particles are different.
\checkmark This horizontal displacement is expressed as the dispersion function $D(s)$
$\checkmark D(s)$ is a function of ' s ' exactly as $\beta(s)$ is a function of ' s '

Dispersion (2)

\checkmark The displacement due to the change in momentum at any position (s) is given by:

$\checkmark \underline{D(s)}$ the dispersion function, is calculated from the lattice, and has the unit of meters.
\checkmark The beam will have a finite horizontal size due to it's momentum spread.
\checkmark In the majority of the cases we have no vertical dipoles, and so $D(s)=0$ in the vertical plane.

Momentum compaction factor

\checkmark The change in orbit with the changing momentum means that the average length of the orbit will also depend on the beam momentum.
\checkmark This is expressed as the momentum compaction factor, a^{p}, where:

$$
\frac{\Delta r}{r}=\alpha_{p} \frac{\Delta p}{p}
$$

$\checkmark \quad{ }_{p}$ tells us about the change in the length of radius of the closed orbit for a change in momentum.

Chromaticity

\checkmark The focusing strength of our quadrupoles depends on the beam momentum, ${ }^{\prime} p$ '

$$
k=\frac{d B y}{d x} \times \frac{1}{B \rho} \quad 3.3356(p)
$$

\checkmark Therefore a spread in momentum causes a spread in focusing strength

$$
\frac{\Delta k}{k}=-\frac{\Delta p}{p}
$$

\checkmark But Q depends on the ' k ' of the quadrupoles

$$
\frac{\Delta Q}{Q} \alpha \frac{\Delta p}{p} \quad \frac{\Delta Q}{Q}=\xi \frac{\Delta p}{p}
$$

\checkmark The constant here is called: Chromaticity

Chromaticity visualized

\checkmark The chromaticity relates the tune spread of the transverse motion with the momentum spread in the beam.

Focusing
quadrupole in
horizontal plane

$\square \frac{\Delta Q}{Q}=\xi \frac{\Delta p}{p}$

Chromaticity calculated

\checkmark Remember $\Delta Q=\frac{1}{4 \pi}(\beta d k d s)$ and $\frac{\Delta k}{k}=-\frac{\Delta p}{p} \square \Delta k=-k \frac{\Delta p}{p}$
\checkmark Therefore $\frac{\frac{\Delta Q}{Q}=\frac{-\frac{1}{4 \pi}\left(\beta \frac{k}{Q} d s\right) \frac{\Delta p}{p}}{4}}{\square}$

The gradient seen by the particle depends on its momentum
\checkmark This term is the Chromaticity ξ
\checkmark To correct this tune spread we need to increase the quadrupole focusing strength for higher momentum particles, and decrease it for lower momentum particles.
\checkmark This we will obtain using a Sextupole magnet

Sextupole Magnets

\checkmark Conventional Sextupole from LEP, but looks similar for other 'warm' machines.
$\checkmark \sim 1$ meter long and a few hundreds of kg.
\checkmark Correction Sextupole of the LHC
$\checkmark 11 \mathrm{~cm}, 10 \mathrm{~kg}, 500 \mathrm{~A}$ at 2 K for a field of $1630 \mathrm{~T} / \mathrm{m}^{2}$

Chromaticity correction

$$
B y=K s \cdot x^{2}
$$

\checkmark Vertical magnetic field versus horizontal displacement in a quadrupole and a sextupole.

Chromaticity correction (2)

\checkmark The effect of the sextupole field is to increase the magnetic field of the quadrupoles for the positive ' x ' particles and decrease the field for the negative ' x ' particles.
\checkmark However, the dispersion function, $D(s)$, describes how the radial position of the particles change with momentum.
\checkmark Therefore the sextupoles will alter the focusing field seen by the particles as a function of their momentum.
\checkmark This we can use to compensate the natural chromaticity of the machine.

Sextupole \& Chromaticity

\checkmark In a sextupole for $y=0$ we have a field $B y=C \cdot x^{2}$
\checkmark Now calculate ' k ' the focusing gradient as we did for a quadrupole:

$$
k=\frac{1}{(B \rho)} \frac{d B_{y}}{d x}
$$

\checkmark Using $B_{y}=C x^{2}$ which after differentiating gives $\frac{d B_{y}}{d x}=2 C x$
\checkmark For k we now write $k=\frac{1}{(B \rho)} 2 C x$
\checkmark We conclude that ' k ' is no longer constant, as it depends on ' x '
\checkmark So for a Δx we get $\Delta k=\frac{2 C}{(B \rho)} \Delta x$ and we know that $\Delta x=D(s) \frac{\Delta p}{p}$
\checkmark Therefore

$$
\Delta k=2 C \times \frac{D(s)}{(B \rho)} \times \frac{\Delta p}{p}
$$

Sextupole \& Chromaticity

\checkmark We know that the tune changes with : $\Delta Q=\frac{1}{4 \pi} \beta(s) d k d s$
\checkmark Where: $d s=$ sextupole length and $d k=\Delta k=2 C \times \frac{D(s)}{(B \rho)} \times \frac{\Delta p}{p}$
\checkmark Remember $B=C \cdot x^{2}$ with $C=\frac{1}{2} \frac{d^{2} B y}{d x^{2}}$
\checkmark The effect of a sextupole with length I on the particle tune Q as a function of $\Delta p / p$ is given by:

$$
\frac{\Delta Q}{Q}=\frac{1}{4 \pi} \ell \beta(s) \frac{d^{2} B y}{d x^{2}} \frac{D(s)}{(B \rho) Q} \frac{\Delta p}{p}
$$

\checkmark If we can make this term exactly balance the natural chromaticity then we will have solved our problem.

Sextupole \& Chromaticity (2)

\checkmark There are two chromaticities:
\checkmark horizontal $\rightarrow \xi_{\text {h }}$
\checkmark vertical $\rightarrow \xi_{v}$
\checkmark However, the effect of a sextupole depends on $\beta(s)$, which varies around the machine
\checkmark Two types of sextupoles are used to correct the chromaticity.
\checkmark One (SF) is placed near QF quadrupoles where β_{h} is large and β is small, this will have a large effect on ξ_{h}
\checkmark Another (SD) placed near QD quadrupoles, where β_{v} is large and β_{h} is small, will correct ξ_{v}
\checkmark Also sextupoles should be placed where $D(s)$ is large, in order to increase their effect, since Δk is proportional to $D(s)$

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Resonances:
\checkmark Normalised Phase Space
\checkmark Dipoles, Quadrupoles, Sextupoles
\checkmark A more rigorous approach
\checkmark Coupling
\checkmark Tune diagram

Normalised Phase Space

\checkmark By multiplying the y-axis by β the transverse phase space is normalised and the ellipse turns into a circle.

Phase Space \& Betatron Tune

\checkmark If we unfold a trajectory of a particle that makes one turn in our machine with a tune of $Q=3.333$, we get:

\checkmark This is the same as going 3.333 time around on the circle in phase space
\checkmark The net result is 0.333 times around the circular trajectory in the normalised phase space
$\checkmark q$ is the fractional part of Q
\checkmark So here $Q=3.333$ and $q=0.333$

What is a resonance?

\checkmark After a certain number of turns around the machine the phase advance of the betatron oscillation is such that the oscillation repeats itself.
\checkmark For example:
\checkmark If the phase advance per turn is 120° then the betatron oscillation will repeat itself after 3 turns.
\checkmark This could correspond to $Q=3.333$ or $3 Q=10$
\checkmark But also $Q=2.333$ or $3 Q=7$
\checkmark The order of a resonance is defined as ' n '

$$
n \times Q=\text { integer }
$$

$Q=3.333$ in more detail

1st turn

2nd turn

3rd turn

Third order resonant betatron oscillation

$$
3 Q=10, Q=3.333, q=0.333
$$

$Q=3.333$ in Phase Space

\checkmark Third order resonance on a normalised phase space plot

Machine imperfections

\checkmark It is not possible to construct a perfect machine.
\checkmark Magnets can have imperfections
\checkmark The alignment in the de machine has non zero tolerance.
\checkmark Etc...
\checkmark So, we have to ask ourselves:
\checkmark What will happen to the betatron oscillation s due to the different field errors.
\checkmark Therefore we need to consider errors in dipoles, quadrupoles, sextupoles, etc...
\checkmark We will have a look at the beam behaviour as a function of ' Q '
\checkmark How is it influenced by these resonant conditions?

Dipole (deflection independent of position)

\checkmark For $Q=2.00$: Oscillation induced by the dipole kick grows on each turn and the particle is lost ($1^{\text {st }}$ order resonance $Q=2$).
\checkmark For $Q=2.50$: Oscillation is cancelled out every second turn, and therefore the particle motion is stable.

Quadrupole (deflection \propto position)

\checkmark For $\mathrm{Q}=$ 2.50: Oscillation induced by the quadrupole kick grows on each turn and the particle is lost $\left(2^{\text {nd }}\right.$ order resonance $2 Q=5$)
\checkmark For $Q=2.33$: Oscillation is cancelled out every third turn, and therefore the particle motion is stable.

Sextupole (deflection \propto position²)

\checkmark For $\underline{Q}=2.33$: Oscillation induced by the sextupole kick grows on each turn and the particle is lost
(3rd order resonance $3 Q=7$)
\checkmark For $Q=2.25$: Oscillation is cancelled out every fourth turn, and therefore the particle motion is stable.

More rigorous approach (1)

\checkmark Let us try to find a mathematical expression for the amplitude growth in the case of a quadrupole error:

$2 \pi Q=$ phase angle over 1 turn $=\theta$
$\Delta \beta y^{\prime}=$ kick
$a=$ old amplitude $\Delta a=$ change in amplitude $2 \pi \Delta Q=$ change in phase
y does not change at the kick

$$
y=a \cos (\theta)
$$

$$
\Delta a=\beta \Delta y^{\prime} \sin (\theta)=1 \beta \sin (\theta \quad k \cos (\theta)
$$

More rigorous approach (2)

\checkmark| \checkmark So we have: $\Delta \mathrm{a}=l \cdot \beta \cdot \sin (\theta) \mathrm{a} \cdot \mathrm{k} \cdot \cos (\theta)$ | $\therefore \frac{\Delta a}{a}=\frac{\ell \beta k}{2} \sin (2 \theta)$ |
| :--- | :--- |
| \checkmark Each turn θ advances by $2 \pi \mathrm{Q}$ | $\begin{array}{l}\sin (\theta) \cos (\theta)=1 / 2 \sin (2 \theta) \\ \end{array}$ |

\checkmark On the $n^{\text {th }}$ turn $\theta=\theta+2 n \pi Q$
\checkmark Over many turns: $\frac{\Delta a}{a}=\frac{\ell \beta k}{2} \sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))$
This term will be 'zero' as it decomposes in Sin and Cos terms and will give a series of + and - that cancel out in all cases where the fractional tune $q \neq 0.5$
\checkmark So, for $q=0.5$ the phase term, $2(\theta+2 n \pi Q)$ is constant:

$$
\sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))=\infty \quad \text { and thus: } \quad \frac{\Delta a}{a}=\infty
$$

More rigorous approach (3)

\checkmark In this case the amplitude will grow continuously until the particles are lost.
\checkmark Therefore we conclude as before that: quadrupoles excite $2^{\text {nd }}$ order resonances for $q=0.5$
\checkmark Thus for $Q=0.5,1.5,2.5,3.5, \ldots$ etc......

More rigorous approach (4)

\checkmark Let us now look at the phase θ for the same quadrupole error:

$2 \pi Q=$ phase angle over 1 turn $=\theta$
$\Delta \beta y^{\prime}=$ kick
$a=$ old amplitude
$\Delta a=$ change in amplitude
$2 \pi \Delta Q=$ change in phase y does not change at the kick

$$
y=a \cos (\theta)
$$

In a quadrupole $\Delta y^{\prime}=\mid k y$

$$
2 \pi \Delta Q=\frac{\Delta\left(\beta y^{\prime}\right) \cos \theta}{a} \rightarrow \Delta Q=\frac{1}{2 \pi} \cdot \frac{\beta \cdot \cos (\theta) \cdot l \cdot a \cdot k \cdot \cos (\theta)}{a}
$$

More rigorous approach (5)

\checkmark So we have: $\Delta Q=\frac{1}{2 \pi} \cdot \frac{\beta \cdot \cos (\theta) \cdot l \cdot a \cdot k \cdot \cos (\theta)}{a}$
\checkmark Since: $\operatorname{Cos}^{2}(\theta)=\frac{1}{2} \operatorname{Cos}(2 \theta)+\frac{1}{2}$ we can rewrite this as:
$\Delta Q=\frac{1}{4 \pi} \cdot l \cdot \beta \cdot k \cdot(\cos (2 \theta)+1)$, which is correct for the $1^{\text {st }}$ turn
\checkmark Each turn θ advances by $2 \pi Q$
\checkmark On the $n^{\text {th }}$ turn $\theta=\theta+2 n \pi Q$
\checkmark Over many turns: $\Delta Q=\frac{1}{4 \pi} \ell \beta k\left[\sum_{n=1}^{\infty} \cos (2(\theta+2 \pi n Q))+1\right]$
\checkmark Averaging over many turns: $\Delta Q=\frac{1}{4 \pi} \beta . k . d s$

Stopband

$\checkmark \Delta Q=\frac{1}{4 \pi} \beta . k . d s$, which is the expression for the change in
\checkmark But note that Q changes slightly on each turn
Related to Q
$\Delta Q=\frac{1}{4 \pi} l \cdot \beta \cdot k(\cos (2 \theta)+1)$
Max variation 0 to 2
$\checkmark Q$ has a range of values varying by: $\frac{\ell \beta k}{2 \pi}$
\checkmark This width is called the stopband of the resonance
\checkmark So even if q is not exactly 0.5 , it must not be too close, or at some point it will find itself at exactly 0.5 and lock on' to the resonant condition.

Sextupole kick

\checkmark We can apply the same arguments for a sextupole:
\checkmark For a sextupole $\Delta y^{\prime}=\ell k y^{2}$ and thus $\Delta y^{\prime}=l k a^{2} \cos ^{2} \theta$
\checkmark We get : $\frac{\Delta a}{a}=\ell \beta k a \sin \theta \cos ^{2} \theta=\frac{\ell \beta k a}{2}[\cos 3 \theta+\cos \theta]$
\checkmark Summing over many turns gives:

\checkmark Sextupole excite $1^{\text {st }}$ and $\underline{3}^{\text {rd }}$ order resonance

Octupole kick

\checkmark We can apply the same arguments for an octupole:
\checkmark For an octupole $\Delta y^{\prime}=l k y^{3}$ and thus $\Delta y^{\prime}=\ell k a^{3} \cos ^{3} \theta$
\checkmark We get: $\frac{\Delta a}{a}=\ell \beta k a^{2} \sin \theta \cos ^{3} \theta$
\checkmark Summing over many turns gives:
$\frac{\Delta a}{a} \propto \mathrm{a}^{2}(\cos 4(\theta+2 \pi \mathrm{nQ})+\cos 2(\theta+2 \pi \mathrm{nQ}))$
a
Amplitude squared

\checkmark Octupolar errors excite $2^{\text {nd }}$ and $4^{\text {th }}$ order resonance and are very important for larger amplitude particles.

Can restrict dynamic aperture

Resonance summary

\checkmark Quadrupoles excite $2^{\text {nd }}$ order resonances
\checkmark Sextupoles excite $\underline{1}^{\text {st }}$ and $3^{\text {rd }}$ order resonances
\checkmark Octupoles excite $\underline{2}^{\text {nd }}$ and $4^{\text {th }}$ order resonances
\checkmark This is true for small amplitude particles and low strength excitations
\checkmark However, for stronger excitations sextupoles will excite higher order resonance's (non-linear)

Coupling

\checkmark Coupling is a phenomena, which converts betatron motion from one plane (horizontal or vertical) into motion in the other plane.
\checkmark Fields that will excite coupling are:
\checkmark Skew quadrupoles, which are normal quadrupoles, but tilted by 45° about it's longitudinal axis.
\checkmark Solenoidal (longitudinal magnetic field)

Skew Quadrupole

Magnetic field

Like a normal quadrupole, but then tilted by 45°

Solenoid; longitudinal field (2)

Solenoid; longitudinal field (2)

Above:
The LPI solenoid that was used for the initial focusing of the positrons.
It was pulsed with a current of 6 kA for some 7 us, it produced a longitudinal magnetic field of 1.5 T .

At the right:
The somewhat bigger CMS solenoid

Coupling and Resonance

\checkmark This coupling means that one can transfer oscillation energy from one transverse plane to the other.
\checkmark Exactly as for linear resonances there are resonant conditions.

$$
n Q_{h} \pm m Q_{v}=\text { integer }
$$

\checkmark If we meet one of these conditions the transverse oscillation amplitude will again grow in an uncontrolled way.

General tune diagram

Realistic tune diagram

 change the horizontal and vertical tune to a place where the beam is the least influenced by resonances.

Conclusion

\checkmark There are many things in our machine, which will excite resonances:
\checkmark The magnets themselves
\checkmark Unwanted higher order field components in our magnets
\checkmark Tilted magnets
\checkmark Experimental solenoids (LHC experiments)
\checkmark The trick is to reduce and compensate these effects as much as possible and then find some point in the tune diagram where the beam is stable.

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Longitudinal motion:

+ The basic synchrotron equations.
+ What is Transition?
+ RF systems.
- Motion of low \& high energy particles.
+ Acceleration.
+ What are Adiabatic changes?

3 February 2010

Motion in longitudinal plane

\# What happens when particle momentum increases?
\Rightarrow particles follow longer orbit (fixed B field)
\Rightarrow particles travel faster (initially)
\# How does the revolution frequency change with the momentum?

Therefore:

The frequency - momentum relation

Transition

\# Lets look at the behaviour of a particle in a constant magnetic field.
\# Low momentum $(\beta \ll \mathbf{1}, \gamma \Rightarrow \mathbf{1}) \longrightarrow \frac{1}{\gamma^{2}}>\alpha_{p}$

* The revolution frequency increases as momentum increases
\# High momentum $(\beta \approx 1, \gamma \gg 1) \longrightarrow \frac{1}{\gamma^{2}}<\alpha_{p}$
\# The revolution frequency decreases as momentum increases
\# For one particular momentum or energy we have:

$$
\frac{1}{\gamma^{2}}=\alpha_{p}
$$

\# This particular energy is called the Transition energy

The frequency slip factor

\# We found

$$
\frac{d f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{p}\right) \frac{\sqrt{p}}{p}=\left(\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{w}^{2}}\right)^{\frac{7 p}{p}}
$$

\# $\frac{1}{\gamma^{2}}>\alpha_{n} \longrightarrow$ Below transition $\longrightarrow \eta=$ positive
\# $\frac{1}{\gamma^{2}}=\alpha_{n} \longrightarrow$ Transition $\quad \longrightarrow=$ zero
$\# \frac{1}{\gamma^{2}}<\alpha_{n} \longrightarrow$ Above transition $\longrightarrow \eta=$ negative
\# Transition is very important in proton machines.
t A little later we will see why....
\# In the PS machine : $\gamma+\mathrm{r}$ is at $\sim 6 \mathrm{GeV} / \mathrm{c}$
\# In the LHC machine : : $\gamma+\mathrm{r}$ is at $\sim 55 \mathrm{GeV} / \mathrm{c}$
\# Transition does not exist in leptons machines, why?
Rende Steerenberg, 03-Feb-2010

Radio Frequency System

\# Hadron machines:

+ Accelerate / Decelerate beams
+ Beam shaping
+ Beam measurements
- Increase luminosity in hadron colliders
\# Lepton machines:
+ Accelerate beams
t Compensate for energy loss due to synchrotron radiation.
(see lecture on Synchrotron Radiation)

RF Cavity

\# To accelerate charged particles we need a longitudinal electric field.
\# Magnetic fields deflect particles, but do not accelerate them.

A Single particle in a longitudinal electric

 field\# Lets see what a low energy particle does with this oscillating voltage in the cavity.

\# Set the oscillation frequency so that the period is exactly equal to one revolution period of the particle.

Add a second particle to the first one

\# Lets see what a second low energy particle, which arrives later in the cavity, does with respect to our first particle.

\# B arrives late in the cavity w.r.t. A
\# B sees a higher voltage than A and will therefore be accelerated
\# After many turns B approaches A
\# B is still late in the cavity w.r.t. A
\# B still sees a higher voltage and is still being accelerated

Lets see what happens after many turns

Synchrotron Oscillations

\# Particle B has made 1 full oscillation around particle A.
\# The amplitude depends on the initial phase.

Exactly like the pendulum

\# We call this oscillation:

Synchrotron Oscillation

The Potential Well (1)

The Potential Well (2)

The Potential Well (3)

Rende Steerenberg,

The Potential Well (4)

Rende Steerenberg,

The Potential Well (5)

The Potential Well (6)

The Potential Well (7)

Rende Steerenberg,

The Potential Well (8)

Rende Steerenberg, 03-Feb-2010

The Potential Well (9)

Potential well

The Potential Well (10)

Rende Steerenberg,

The Potential Well (11)

The Potential Well (12)

Rende Steerenberg,

The Potential Well (13)

The Potential Well (14)

The Potential Well (15)

Longitudinal Phase Space

* In order to be able to visualize the motion in the longitudinal plane we define the longitudinal phase space (like we did for the transverse phase space)

Phase Space motion (1)

\# Particle B oscillates around particle A
t This is synchrotron oscillation
\# When we plot this motion in our longitudinal phase space we get:
early arrival

Phase Space motion (2)

\# Particle B oscillates around particle A
t This is synchrotron oscillation
\# When we plot this motion in our longitudinal phase space we get:
higher energy
early arrival

Phase Space motion (3)

\# Particle B oscillates around particle A
t This is synchrotron oscillation
\# When we plot this motion in our longitudinal phase space we get:
higher energy
early arrival

Phase Space motion (4)

\# Particle B oscillates around particle A
t This is synchrotron oscillation
\# When we plot this motion in our longitudinal phase space we get:
higher energy
early arrival

Quick intermediate summary...

\# We have seen that:
t The RF system forms a potential well in which the particles oscillate (synchrotron oscillation).

+ We can describe this motion in the longitudinal phase space (energy versus time or phase).
+ This works for particles below transition.
\# However,
+ Due to the shape of the potential well, the oscillation is a non-linear motion.
+ The phase space trajectories are therefore no circles nor ellipses.
+ What when our particles are above transition?

Stationary bunch \& bucket

Bunch
Bucket
\# Bucket area = longitudinal Acceptance [eVs]
$\#$ Bunch area $=$ longitudinal beam emittance $=\pi \cdot \Delta E \cdot \Delta t / 4[\mathrm{eVs}]$

Unbunched (coasting) beam

\# The emittance of an unbunched beam is just $\Delta E T$ eVs
E ΔE is the energy spread [eV]
$\vdash \mathrm{T}$ is the revolution time [s]

What happens beyond transition?

\# Until now we have seen how things look like below transition

$$
\eta=\text { positive }
$$

Higher energy \Rightarrow faster orbit \Rightarrow higher $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be earlier.
Lower energy \Rightarrow slower orbit \Rightarrow lower $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be later.
\# What will happen above transition?

$\eta=$ negative

Higher energy \Rightarrow longer orbit \Rightarrow lower $\mathrm{F}_{\text {rev }} \Rightarrow$ next time particle will be later.
Lower energy \Rightarrow shorter orbit \Rightarrow higher $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be earlier.

What are the implication for the RF?

\# For particles below transition we worked on the rising edge of the sine wave.
\# For Particles above transition we will work on the falling edge of the sine wave.
\# We will see why........

Longitudinal motion beyond transition (1)

time
\# Imagine two particles A and B, that arrive at the same time in the accelerating cavity (when $\mathrm{V}_{\text {rf }}=\mathrm{OV}$)

+ For A the energy is such that $F_{\text {rev } A}=F_{r f}$.
+ The energy of B is higher $\rightarrow F_{\text {rev } B}<F_{\text {rev } A}$

Longitudinal motion beyond transition (2)

time
\# Particle B arrives after A and experiences a decelerating voltage.

F The energy of B is still higher, but less $\rightarrow F_{\text {rev B }}<F_{\text {rev } A}$

Longitudinal motion beyond transition (3)

time
\# B has now the same energy as A, but arrives still later and experiences therefore a decelerating voltage.
$+F_{\text {rev } B}=F_{\text {rev } A}$

Longitudinal motion beyond transition (4)

time
\# Particle B has now a lower energy as A, but arrives at the same time
$-F_{\text {rev } B}>F_{\text {rev } A}$

Longitudinal motion beyond transition (5)

time
\# Particle B has now a lower energy as A, but B arrives before A and experiences an accelerating voltage.
$-F_{\text {rev } B}>F_{\text {rev } A}$

Longitudinal motion beyond transition (6)

time
\# Particle B has now the same energy as A, but B still arrives before A and experiences an accelerating voltage.

$$
+F_{\text {rev } B}>F_{\text {rev } A}
$$

Longitudinal motion beyond transition (7)

time
\# Particle B has now a higher energy as A and arrives at the same time again....
$+F_{\text {rev } B}<F_{\text {rev } A}$

The motion in the bucket (1)

The motion in the bucket (2)

Rende Steerenberg, 03-Feb-2010

The motion in the bucket (3)

Rende Steerenberg, 03-Feb-2010

The motion in the bucket (4)

Rende Steerenberg, 03-Feb-2010

AXEL - 2010

The motion in the bucket (5)

Rende Steerenberg, 03-Feb-2010

The motion in the bucket (6)

Rende Steerenberg, 03-Feb-2010

AXEL - 2010

The motion in the bucket (7)

Rende Steerenberg, 03-Feb-2010

The motion in the bucket (8)

Rende Steerenberg, 03-Feb-2010

The motion in the bucket (9)

Before and After Transition

Transition crossing in the PS

\# Transition in the PS occurs around $6 \mathrm{GeV} / \mathrm{c}$

- Injection happens at $2.12 \mathrm{GeV} / \mathrm{c}$
+ Ejection can be done at $3.5 \mathrm{GeV} / \mathrm{c}$ up to $26 \mathrm{GeV} / \mathrm{c}$
\# Therefore the particles in the PS must nearly always cross transition.
\# The beam must stay bunched
\# Therefore the phase of the RF must "jump" by π at transition

Harmonic number (1)

\# Until now we have applied an oscillating voltage with a frequency equal to the revolution frequency.

$$
\mathbf{F}_{\mathrm{rf}}=\mathbf{F}_{\mathrm{rev}}
$$

\# What will happen when $F_{r f}$ is a multiple of $f_{r e v}$???

$$
\mathbf{F}_{\mathrm{rf}}=\mathbf{h} \times \mathbf{F}_{\mathrm{rev}}
$$

Frequency of the synchrotron oscillation (1)

\# On each turn the phase, ϕ, of a particle w.r.t. the RF waveform changes due to the synchrotron oscillations.

Change in revolution frequency
\# We know that $\frac{d f_{m}}{f_{w}}=-\eta \frac{d E}{E}$
\# Combining this with the above $\therefore \frac{d \phi}{d t}=\frac{-2 \pi h \eta}{E} \cdot d E \cdot f$
\# This can be written as

$$
\frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{\text {rev }} \frac{d E}{d t}
$$

Frequency of the synchrotron oscillation (2)

\# So, we have: $\frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{r e v} \frac{d E}{d t}$
\# Where dE is just the energy gain or loss due to the RF system during each turn

Frequency of the synchrotron oscillation (3)

$$
\begin{aligned}
& \frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{\text {rev }} \frac{d E}{d t} \text { and } d E=V \sin \phi \longrightarrow \frac{d E}{d t}=f_{m w} V \sin \phi \\
& \frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{r e v}{ }^{2} \cdot V \cdot \sin \phi \\
& \text { \# If } \phi \text { is small then } \sin \phi=\phi \frac{d^{2} \phi}{d t^{2}}+\left(\frac{2 \pi h \eta}{E} \cdot f_{r e v}{ }^{2} \cdot V\right) \phi=0
\end{aligned}
$$

\# This is a SHM where the synchrotron oscillation frequency is given by:

Acceleration

\# Increase the magnetic field slightly on each turn.
\# The particles will follow a shorter orbit. ($F_{\text {rev }}<F_{\text {synch }}$)
\# Beyond transition, early arrival in the cavity causes a gain in energy each turn.

\# We change the phase of the cavity such that the new synchronous particle is at ϕ_{s} and therefore always sees an accelerating voltage
\# $\mathrm{V}_{\mathrm{s}}=\mathrm{V} \sin \phi_{\mathrm{s}}=\mathrm{V} \Gamma=$ energy gain/turn $=\mathrm{dE}$

Acceleration \& RF bucket shape (1)

Acceleration \& RF bucket shape (2)

\# The modification of the RF bucket reduces the acceptance
\# The faster we accelerate (increasing $\sin \phi_{s}$) the smaller the acceptance
\# Faster acceleration also modifies the synchrotron tune.
\# For a stationary bucket ($\phi s=0$) we had:

\# For a moving bucket $(\phi s \neq 0)$ this becomes:

$$
\left(\sqrt{\frac{2 \pi h \eta}{E}}\right) \cdot f_{n v} \cos \phi
$$

Non-adiabatic change (1)

\# What will happen when we increase the voltage rapidly?

Non-adiabatic change (2)

Non-adiabatic change (3)

Non-adiabatic change (4)

Non-adiabatic change (5)

Non-adiabatic change (6)

Non-adiabatic change (7)

Non-adiabatic change (8)

Non-adiabatic change (9)

Adiabatic change (1)

\# To avoid this filamentation we have to change slowly w.r.t. the synchrotron frequency.
\# This is called 'Adiabatic' change.

Adiabatic change (2)

Adiabatic change (3)

Adiabatic change (4)

Adiabatic change (5)

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Synchrotron Radiation

\checkmark What is it?
\checkmark Rate of energy loss
\checkmark Longitudinal damping
\checkmark Transverse damping
\checkmark Quantum fluctuations
\checkmark Wigglers

Acceleration and Electro-Magnetic Radiation

\# An accelerating charge emits Electro-Magnetic waves. \# Example:

An antenna is fed by an oscillating current and it emits electro magnetic waves.
\# In our accelerator we know to types of acceleration:

+ Longitudinal - RF system
+ Transverse - Magnetic fields, dipoles, quadrupoles, etc..

\# So: $|m \cdot \vec{v}|=$ constant

Rate of EM radiation

\# The rate at which a relativistic lepton radiates EM energy is :

Force // velocity

+ Longitudinal a square of energy (E^{2})
Force \perp velocity
+ Transverse \propto square of magnetic field $\left(B^{2}\right)$

$$
\mathrm{P}_{\mathrm{SR}} \propto \mathrm{E}^{2} \mathrm{~B}^{2}
$$

\# In our accelerators:

- Transverse force > Longitudinal force
- Therefore we only consider radiation due to 'transverse acceleration' (thus magnetic forces)

Rate of energy loss (1)

\# This EM radiation generates an energy loss of the particle concerned, which can be calculated using:

\# Our force can be written as: $F=e v B=e c B$
\# Thus: $P=\left(\frac{2 e^{2} r c^{3}}{3\left(m_{0} c^{2}\right)^{3}}\right) E^{2} B^{2}$ but $(B \rho)=\frac{p}{e}=\frac{E \beta}{e c}$
\# Which gives us: $P=\left(\frac{2 r c}{3\left(m_{0} c^{2}\right)^{3}}\right) \frac{E^{4}}{\rho^{2}}$

Rate of energy loss (2)

\# We have: $P=\left(\frac{2 r c}{3\left(m_{c} c^{2}\right)}\right) \frac{E^{*}}{\rho^{2}}$, which gives the energy loss
\# We are interested in the energy loss per revolution for which we need to integrate the above over 1 turn
\# Thus: $\int P d t=\int P \frac{d s}{c}$
\# However:

$$
\rho \frac{d s}{c}=2 \pi j \frac{d \rho}{c}
$$

Bending radius
inside the magnets

Lepton energy
\# Finally this gives: $u=\underbrace{\frac{4 \pi}{3\left(m_{0} c^{2}\right)^{3}}{ }^{3} \int \frac{1}{\rho^{2}}}_{C} d \rho=-\frac{C E^{4}}{\rho}$
$\begin{gathered}\text { Gets very large if } \\ \text { E is large !!! }\end{gathered}$

What about the synchrotron oscillations?

\# The RF system, besides increasing the energy has to make up for this energy loss u.
\# All the particles with the same phase, ϕ, w.r.t. RF waveform will have the same energy gain $\Delta E=V \sin \phi$
\# However,
r Lower energy particles lose less energy per turn

- Higher energy particles lose more energy per turn
$u=-\frac{C E^{4}}{\rho}$
\# What will happen...???

Synchrotron motion for leptons

\# All three particles will gain the same energy from the RF system
\# The black particle will lose more energy than the red one.
\# This leads to a reduction in the energy spread, since u varies with E^{4}.

Longitudinal damping in numbers (1)

\# Remember how we calculated the synchrotron frequency.
\# It was based on the change in energy: $d E=V \sin \phi$
\# Now we have to add an extra term, the energy loss du
\# $d E=V \sin \phi-d u$ becomes $\frac{d E}{d t}=f_{\text {rev }} V \sin \phi-f_{\text {rev }} d u$
\# Our equation for the synchrotron oscillation becomes then:

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{2 \pi h \eta}{E} \cdot f_{\text {rev }}{ }^{2} \cdot V\right) \phi-\frac{2 \pi h \eta}{E} f_{\text {rev }}{ }^{2} d u=0
$$

Extra term for energy loss

Longitudinal damping in numbers (2)

\# This term:

$$
\frac{2 \pi h \eta}{E} f_{\text {rev }}{ }^{2} d u \rightarrow \frac{d u}{E}=\frac{d u}{d E} \frac{d E}{E}
$$

\# Can be written as: $2 \pi h \eta f_{m}^{2} \frac{d u}{d E} \frac{d E}{E}$ but $\frac{d E}{E}=-\frac{1}{\eta} \frac{d f_{m}}{f_{m}}$
\# This now becomes:
$\frac{d \phi}{d t}$

\# The synchrotron oscillation differential equation becomes now:
$\frac{d^{2} \phi}{d t^{2}}+\frac{d u}{d E} \frac{1}{T_{r e v}} \frac{d \phi}{d t}+\left(\frac{2 \pi h \eta}{E} \cdot f_{r e v}{ }^{2} \cdot V\right) \phi=0$

Longitudinal damping in numbers (3)

\# So, we have:

$$
\frac{d^{2} \phi}{d t^{2}}+\frac{d u}{d E} \frac{1}{T_{\text {rev }}} \frac{d \phi}{d t}+\left(\frac{2 \pi h \eta}{E} \cdot f_{\text {rev }}{ }^{2} \cdot V\right) \phi=0
$$

\# The damping coefficient $\alpha=\frac{d u}{d E} \frac{1}{T_{n v}}$
\# This confirms that the variation of u as a function of E leads to damping of the synchrotron oscillations as we already expected from our reasoning on the 3 particles in the longitudinal phase space.

Longitudinal damping time

\# The damping coefficient is given by: $\alpha=\frac{d u}{d E} \frac{1}{T_{c o}}$
\# We know that $u=-\frac{C E^{4}}{\rho}$ and thus $\frac{d u}{d E}=-\frac{4 C E^{3}}{\rho}$ \# So approximately: $\frac{d u}{d E}=-\frac{4 u}{E} \pi u=-\frac{C E^{4}}{\rho} \quad \begin{gathered}\text { Not totally } \\ \text { correct since } \\ \rho \propto E\end{gathered}$
\# For the damping time we have then:

\# The damping time decreases rapidly $\left(E^{3}\right)$ as we increase the beam energy.

Damping \& Longitudinal emittance

\# Damping of the energy spread leads to shortening of the bunches and hence a reduction of the longitudinal emittance.

Some LHC numbers

\# Energy loss per turn at:
t injection at $450 \mathrm{GeV}=1.15 \times 10^{-1} \mathrm{eV}$

+ Collision at $7 \mathrm{TeV}=6.71 \times 10^{3} \mathrm{eV}$
\# Power loss per meter in the main dipoles at 7 TeV is $0.2 \mathrm{~W} / \mathrm{m}$
\# Longitudinal damping time at:
+ Injection at $450 \mathrm{GeV}=48489.1$ hours
+ Collision at $7 \mathrm{TeV}=13$ hours

What about the betatron oscillations? (1)

\# Each photon emission reduces the transverse and longitudinal energy or momentum.
\# Lets have a look in the vertical plane:

What about the betatron oscillations? (2)

\# The RF system must make up for the loss in longitudinal energy dE or momentum dp.
\# However, the cavity only supplies energy parallel to ideal trajectory.

\# Each passage in the cavity increases only the longitudinal energy.
\# This leads to a direct reduction of the amplitude of the betatron oscillation.

Vertical damping in numbers (1)

\# The RF system increases the momentum p by $d p$ or energy E by $d E$
$\mathbf{p}_{\boldsymbol{t}}=$ transverse momentum $\quad \mathbf{p}_{\boldsymbol{T}}=$ total momentum $\quad \begin{array}{r}\operatorname{Tan}(a)=a \\ \text { If } a \ll\end{array}$

$\mathrm{p}=$ longitudinal momentum
dp is small

$$
\operatorname{new}\left(y^{\prime}\right)=\frac{p_{t}}{p+d p}=\frac{p_{t}}{p}\left(1-\frac{d p}{p}\right)=y^{\prime}\left(1-\frac{d p}{p}\right)
$$

\# The change in transverse angle is thus given by:

$$
d y^{\prime}=-y^{\prime} \frac{d p}{p}=-y^{\prime} \frac{d E}{E}
$$

Vertical damping in numbers (2)

\# A change in the transverse angle alters the betatron oscillation amplitude

$$
\begin{aligned}
& d a=\beta \cdot d y^{\prime} \cdot \sin \theta \\
& d a=-\beta \cdot y^{\prime} \frac{d E}{E} \cdot \sin \theta
\end{aligned}
$$

$a \cdot \sin \theta$

$$
\langle d a\rangle=-\sum_{0=0}^{2 \pi} \beta \cdot y^{\prime} \frac{d E}{E} \cdot \sin \theta
$$

$$
\langle d a\rangle=-a \frac{d E}{E} \sum_{a=0}^{2 \pi} \sin ^{2} \theta
$$

Summing over many photon emissions

$$
\frac{\langle d a\rangle}{a}=-\frac{1}{2} \frac{d E}{E}
$$

Vertical damping in numbers (3)

\# We found: $\frac{\langle d a\rangle}{a}=-\frac{1}{2} \frac{d E}{E}-\quad \begin{gathered}\mathrm{dE} \text { is just the change in } \\ \text { energy per turn u } \\ \text { (energy given back by RF) }\end{gathered}$
\# The change in amplitude/turn is thus: $\langle d a\rangle=\Delta a$

* Which is also: $\Delta a=-\frac{u}{2 E} a$
* Thus: $\frac{d a}{d t}=-\frac{u}{2 E T} a \quad$| Change in amplitude/second |
| :--- |
| Revolution time |

\# This shows exponential damping with coefficient: $\alpha=\frac{u}{2 E T}$

$$
\begin{array}{|l}
\hline \text { Damping time }=\frac{2 E T}{u \longleftarrow} \quad \text { (similar to longitudinal case) } \\
\text { R. Steerenberg, 04-Feb-2010 } \propto \frac{C E^{4}}{\rho} \\
\text { AXEL }-2010
\end{array}
$$

Horizontal damping in numbers

\# Vertically we found: $\frac{\langle d a\rangle}{a}=-\frac{1}{2} \frac{u}{E}$
\# This is still valid horizontally
\# However, in the horizontal plane, when a particle changes energy (dE) its horizontal position changes too
$\frac{d r}{r}=\alpha_{p} \frac{d p}{p}=\alpha_{p} \frac{d E}{E}=\alpha_{p} \frac{u}{E}$ OK since $\beta=1$
\# horizontally we get: $\frac{\langle d a\rangle}{a}=-(1-2 \alpha) \frac{u}{2 E}$

\# Horizontal damping time: $\frac{2 E T}{u}\left(\frac{1}{1-2 \alpha}\right)$
$\begin{array}{c}\text { R. Steerenberg, 04-Feb-2010 } \quad \text { AXEL - } 2010\end{array}$
$\begin{array}{c}\text { Ok provided } \\ \alpha \text { small }\end{array}$
19

Some intermediate remarks....

\# Transverse damping time at:

- Injection at $450 \mathrm{GeV}=48489.1$ hours
+ Collision at $7 \mathrm{TeV}=26$ hours
\# Longitudinal and transverse emittances all shrink as a function of time.
\# Damping times are typically a few milliseconds up to a few seconds for leptons.
\# Advantages:
+ Reduction in losses
- Injection oscillations are damped out
- Allows easy accumulation
- Instabilities are damped
\# Inconvenience:
- Lepton machines need lots of RF power, therefore LEP was stopped
\# All damping is due to the energy gain from the RF system an not due to the emission of synchrotron radiation

Is there a limit to this damping? (1)

\# Can the bunch shrink to microscopic dimensions?
\# No! , Why not?
\# For the horizontal emittance ε_{h} there is heating term due to the horizontal dispersion.
\# What would stop dE and ε_{v} of damping to zero?
\# For ε_{v} there is no heating term. So ε_{v} can get very small. Coupling with motion in the horizontal plane finally limits the vertical beam size

Is there a limit to this damping? (2)

\# In the vertical plane the damping seems to be limited.
\# What about the longitudinal plane?
\# Whenever a photon is emitted the particle energy changes.
\# This leads to small changes in the synchrotron oscillations.
\# This is a random process.
\# Adding many such random changes (quantum fluctuations), causes the amplitude of the synchrotron oscillation to grow.
\# When growth rate = damping rate then damping stops, which give a finite equilibrium energy spread.

Quantum fluctuations (1)

\# Quantum fluctuation is defined as:

- Fluctuation in number of photons emitted in one damping time
\# Let E_{p} be the average energy of one emitted photon
\# Damping time $\propto \frac{E T}{u \times \text { seconds }} \begin{array}{r}\text { Revolution time } \\ \text { Energy loss/turn }\end{array}$
\# Number of photons emitted/turn $=\frac{u}{E_{p}}$
\# Number of emitted photons in one damping time can then be given by:
$\frac{u}{E_{p}} \frac{E}{u}=\frac{E}{E_{p}}$

Quantum fluctuations (2)

\# Number of emitted photons in one damping time $=\frac{E}{E_{r}}$
\# r.m.s. deviation $=\sqrt{\frac{E}{E_{n}}}$ Random
process
\# The r.m.s. energy deviation $=\sqrt{\frac{E}{E_{r}}} E_{r}=\sqrt{E E_{r}}$
\# The average photon energy $\mathbf{E}_{\mathbf{p}} \propto \mathbf{E}^{3}$
\# The r.m.s. energy spread $\propto \mathbf{E}^{2}$
\# The damping time $\propto \mathbf{E}^{3}$
Higher energy \Rightarrow faster longitudinal damping, but also larger energy spread

Wigglers (1)

\# The damping time in all planes $\propto E T$

$$
u
$$

\# If the loss of energy, u, increases, the damping time decreases and the beam size reduces.
\# To be able to control the beam size we add 'wigglers'

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{N} & \mathbf{S} & \mathbf{N} & \mathbf{S} \\
\hline
\end{array}
$$

beam

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathbf{S} & \mathbf{N} & \mathbf{S} & \mathbf{N} \\
\hline
\end{array}
$$

\# It is like adding extra dipoles, however the wiggles does not give an overall trajectory change, but increases the photon emission

Wigglers (2)

\# What does the wiggler in the different planes?
\# Vertically:

+ We do not really need it (no heating term), but the vertical emittance would be reduced
\# Horizontally:
+ The emittance will reduce.
r A change in energy gives a change in radial position
* We know the dispersion function: $d r=D(s) \frac{d E}{E}$
+ In order to reduce the excitation of horizontal oscillations we should put our wiggler in a dispersion free area $(D(s)=0)$

Wigglers (3)

\# Longitudinally:
t The wiggler will increase the number of photons emitted

- It will increase the quantum fluctuations
+ It will increase the energy spread
\# Conclusion:
Wigglers increase longitudinal emittance and decrease transverse emittance

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Transfer lines, injection and ejection

\checkmark Transfer lines: Transverse matching
\checkmark Single turn injection
\checkmark Multi-turn injection for protons and heavy ions
\checkmark Charge exchange injection for protons
\checkmark Leptons, betatron and synchrotron injection
\checkmark Single-turn \& multi-turn extraction

> | Rende Steerenberg (BE/OP) |
| :---: |
| 4 February 2010 |

Overview

\# How to get a beam into and out of circular accelerators and storage rings.
\# The wide range of requirements will require several different solutions
F injection into a synchrotron from a LINAC

- transfer between two synchrotrons
t extraction to an end-user facility
t accumulation of particles, to increase intensity
t dealing with different particles

CERN Accelerators

Transfer Lines (1)

\# Particles trajectories in transfer lines are treated the same way as in a circular machine, with the only difference that they pass only once.
\# We use:

+ Dipoles to deflect particles
+ Quadrupoles to focus particles transversely
\# This leads to betatron oscillations and functions
\# We can use the 2×2 matrices to describe the transverse motion of the particle

$$
\left.\binom{x_{2}}{x_{2}^{\prime}}=\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}^{\prime}}{x_{1}^{\prime}}
$$

\# But... the transfer line is not closed up on itself !

Transfer Lines (2)

\# The particles trajectories in transfer lines are no \dagger closed
\# This means that the
t initial lattice parameters \neq final lattice parameters
\# Due to this the transfer matrix gets slightly more complicated.

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{2}}\left(\cos \mu+\alpha_{1} \sin \mu\right)} & \sqrt{\beta \beta_{2}} \sin \mu \\
\frac{(1+\alpha, \alpha, \alpha) \sin \mu+\left(\alpha_{2}-\alpha_{1}\right) \cos \mu}{\sqrt{\beta_{1} \beta_{2}}}\left(\cos \mu-\alpha_{2} \sin \mu\right)
\end{array}\right) \times\binom{ x_{1}}{x_{1}^{\prime}}
$$

Transfer Lines (3)

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta}}\left(\cos \mu+\alpha_{1} \sin \mu\right) & \sqrt{\beta_{1} \beta_{2}} \sin \mu \\
\left.\frac{\left(1+\alpha_{1} \alpha_{2}\right)}{}\right) \sin \mu+\left(\alpha_{2}-\alpha_{1}\right) \cos \mu \\
\sqrt{\beta_{1} \beta_{2}} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \mu-\alpha_{2} \sin \mu\right)
\end{array}\right) \times\binom{ x_{1}}{x_{1}^{\prime}}
$$

\# For $\beta_{1}=\beta_{2}, \alpha_{1}=\alpha_{2}$ etc this reduces to the matrix we had for our accelerator, but for transfer lines we must retain the full matrix.
\# We can calculate the Twiss parameters exactly as for our accelerator.
\# However, there are an infinite number of solutions... since for any value β_{1} there will give a particular solution for β_{2}.
\# Thus the final α, β, etc. depends on the initial α, β, etc.

Transfer between machines (1)

\# The initial phase space ellipse will be determined by the accelerator (1), from which the beam is being extracted. (point A)
\# Then we calculate the transport matrix that describes the transport line and we calculate the final ellipse at point B

Transfer between machines (2)

\# However, machine (2) will have it's own predetermined transverse phase space ellipse at B.
\# If the phase space ellipse, which arrives from the transfer line is different (which can be the case) then.... what will happen to the beam?

Transverse phase space

Transverse matching

\# Set initial $\beta_{1}, \alpha_{1 .}=\beta, \alpha$ for machine 1 at point A \# Calculate the transfer matrix so that $\beta_{2}, \alpha_{2} . .=\beta, \alpha$ for machine 2 at point B
\# Be careful with the envelope considerations in the transfer line (emittance vs acceptance).
\# Variables \Rightarrow quadrupole strengths and positions

Single turn injection (1)

\# With a single turn injection we inject one or more bunches into a synchrotron in a single turn. (revolution period of receiving machine)
\# Elements involved:

- Transfer line
- Septum magnet
- Fast kicker magnet

- Synchrotron (receiving machine)

Single turn injection (2)

Injection trajectory
kicker

Injection channel

$$
\begin{array}{ll}
x=\sqrt{\beta_{s} \cdot \varepsilon_{i}}+\sqrt{\beta_{s} \cdot \varepsilon}+D_{s}\left(\frac{d p_{i}}{p}+\frac{d p}{p}\right)+x_{c o}+x_{s} & \begin{array}{l}
\text { Septum } \\
\text { thickness }
\end{array} \\
\delta=\frac{x}{\sqrt{\beta_{s} \cdot \beta_{k}} \cdot \sin (\mu(s \rightarrow k))} & \begin{array}{l}
\beta s \gg \\
\beta k \gg \\
\\
\text { Minimize } \delta \text { to reduce kicker strength }
\end{array} \\
\mu(s->k)=(2 n+1) \pi / 2
\end{array}
$$

Injection oscillations (1)

Error (δ)

μ

$$
\begin{aligned}
& \longleftrightarrow / 2 \\
& \pi / 2 \\
& \delta=\frac{\mathbf{x}}{\sqrt{\beta_{\mathrm{a} \cdot} \beta_{\mathrm{b}}} \sin (\mu)}
\end{aligned}
$$

R. Steerenberg, 04-Feb-2010

Injection oscillations (2)

\# Any residual transverse oscillation will lead to an emittance blow-up
\# Measurement methods, FFT analysis of one BPM signal, compare single-turn and closed orbit
\# Possible that injection is well corrected, but there is still an emittance blow-up
\# Matching...

Multi-turn injection for hadrons (1)

\# For hadrons the beam density at injection is either limited by space charge effects or by the injector (heavy ions...)
\# Usually we inject from a LINAC into a synchrotron
\# We cannot increase charge density, so we fill the horizontal phase space to increase injected intensity.
\# Elements used

- Septum
+ Fast beam bumpers, made out of 3 or 4 dipoles for more flexibility, to create a local beam bump

Multi-turn injection for hadrons (3)

\# Lets have a look at a real example...
\# Could be the PS Booster
\# Let qh = . 25 (fractional tune)
\# Let us have a look what happens in phase space turn after turn

Multi-turn injection for hadrons (4)

Multi-turn injection for hadrons (5)

Multi-turn injection for hadrons (6)

Multi-turn injection for hadrons (7)

Multi-turn injection for hadrons (8)

Multi-turn injection for hadrons (9)

Multi-turn injection for hadrons (10)

Multi-turn injection for hadrons (11)

Multi-turn injection for hadrons (12)

Multi-turn injection for hadrons (13)

Multi-turn injection for hadrons (14)

Multi-turn injection for hadrons (15)

Multi-turn injection for hadrons (16)

Multi-turn injection for hadrons (17)

Multi-turn injection for hadrons (18)

\# Now the horizontal phase acceptance is completely filled and acceleration can start

Multi-turn injection for hadrons (19)

\# We need to control the tune Qh and the beam bump accurately
r in order to reduce losses
ז in order to fill the horizontal phase space most efficiently
\# We need a very thin septum
t in order to minimize the losses on subsequent turns

- in order to reduce phase space dilution.

Multi-turn injection for hadrons (20)

\# The optimum reduction in the orbit bump/turn can be calculated using:

Charge exchange injection (1)

\# The charge exchange extraction is already operational in different laboratories around the world.
\# At CERN it will be used for the $1^{\text {st }}$ time when Linac 4 will be ready to deliver beam to the PS Booster
\# The charge exchange injection works as following:

+ Transport H - ions from the linac to the synchrotron
t Strip the H -ions to protons inside the ring acceptance
\# In order to strip the ions, but no to blow-up the beam to much we carefully need to consider the stripping foil requirements
\# It has advantages over normal multi-turn proton injection

Charge exchange injection (2)

Charge exchange injection (3)

\# It makes it possible to "beat" Liouville's theorem, which says that emittance is conserved.
\# We paint a uniform transverse phase space density by modifying the beam bump and by and changing the steering of the injected beam
\# The foil thickness should be calculated to strip most ions (99\%)

+ $50 \mathrm{MeV}-50 \mathrm{ug} . \mathrm{cm}^{-2}$
+ $800 \mathrm{MeV}-200 \mathrm{ug} . \mathrm{cm}^{-2}$
\# Types of foils that can be used:
- Carbon
- Aluminum
\# To avoid excessive foil heating and unnecessary beam blow up the injection bump is reduced to zero as soon as the injection is finished

Lepton injection

\# We can apply the same fast injection as for protons however, there are differences with respect to proton or ion injection
\# Remember lepton motion is damped in our accelerator
\# We can use transverse and longitudinal damping to perform:

+ Betatron accumulation (most lepton machines)
- Synchrotron accumulation (was used in LEP)

Betatron accumulation (2)

Synchrotron accumulation (1)

Synchrotron accumulation (2)

Single turn ejection (1)

\# With a single turn ejection we eject one or more bunches out of a synchrotron in a single turn.
(revolution period)
\# Elements involved:

- Synchrotron
- Bumper
- Septum magne \dagger
- Fast kicker magnet
- Ejection synchronization

Single turn ejection (2)

$$
x=\sqrt{\beta_{s} \cdot \varepsilon_{e}}+\sqrt{\beta_{s} \cdot \varepsilon}+D_{s}\left(\frac{d p_{e}}{p}+\frac{d p}{p}\right)+x_{c o}+x_{s}
$$

$$
\delta=\frac{x}{\sqrt{\beta_{s} \cdot \beta_{k}} \cdot \sin \left(\mu_{(k \rightarrow s)}\right)}
$$

Multi-turn extraction (1)

\# Many physicists would like to have a continuous flux of particles.
\# However, this is not possible with our machines and the way we work.
\# We try to approach this using multi-turn extractions
\# We know two types of multi turn ejection:

+ Non-Resonant multi-turn ejection (few turns)
e.g.. PS to SPS at CERN for high intensity proton beams (>2.5 10^{13} protons)
- Resonant extraction (millisecs to hours)

Spills to experiments from a synchrotron

Non-resonant multi-turn extraction (1)

$1^{\text {st }}$ turn

Set Qh = .. . 25 and apply a beam bump

Non-resonant multi-turn extraction (2)

\# Particularities:

- Use a thin septum, to reduce losses
r Use two septa (electro-static, magnetic)
+ First septum is moveable, position and angle
+ Only gives a few turns... (>11010 particles/turn)
+ Many users need $<10^{6}$ particles/second
\# For very high intensity beams the beam losses may be too important to use this method.
\# Hands on maintenance becomes difficult.

A novel Multi-Turn Extraction

\# The majority of the losses are produced on the thin septum and are a function of beam intensity and density
\# If we could de-populate the beam at the places where the septum will slice the beam, we could reduce these losses.
\# Using strong non-linear elements like sextupoles and octupoles and programming the correct tune, one can create stable islands in phase space.
\# The trick now is to capture beam in these stable islands and to have no particles in between the islands.

Capture beam in stable islands

Extract the beam

At the septum location

Courtesy of M. Giovannozzi
\# A slow bump will move the islands towards the septum
\# A fast bump will make the island jump to the other side of the septum
\# The tune of 6.25 will make that the beam will rotate 90 degrees in phase space each revolution period
\# The four islands will be extracted
\# The central part will be extracted using a fast kicker
\# This way there are no particles lost on the septum blade.
\# The first beams to the SPS for CNGS were extracted this way end of 2008.

Resonant extraction (1)

\# How to extract beam over thousands of turns ?
\# The idea is that few particles jump to the other side of the septum every revolution period
\# Resonant transverse motion makes the beam size increase
\# Set $3 Q_{h}=$ integer (third order resonance)
\# Use sextupoles to excite this resonance with correct phase...
\# Use a horizontal beam bump at the extraction septum, to ensure that the septum is the aperture limitation

Resonant extraction (2)

Resonant extraction (3)

Resonant extraction (4)

septum

Why is the septum angle is important?

Resonant extraction (5)

\# The beam can be extracted in different ways:

+ Move the resonance into the beam (change the current in the quadrupoles)
+ Move the particles onto the resonance (change the radial position of the beam)
\# Both principles can generate beam spills ranging from several milliseconds up to several hours.

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Longitudinal instabilities:

\checkmark Single bunch longitudinal instabilities
\checkmark Multi bunch longitudinal instabilities
\checkmark Different modes
\checkmark Bunch lengthening

$$
\begin{gathered}
\hline \text { Rende Steerenberg (BE/OP) } \\
5 \text { February } 2010 \\
\hline
\end{gathered}
$$

Instabilities (1)

\# Until now we have only considered independent particle motion.
\# We call this incoherent motion.
t single particle synchrotron/betatron oscillations

+ each particle moves independently of all the others
\# Now we have to consider what happens if all particles move in phase, coherently, in response to some excitations

Synchrotron \& betatron oscillations

Instabilities (2)

\# We cannot ignore interactions between the charged particles
\# They interact with each other in two ways:

Space charge effects, intra beam scattering

เ Direct Coulomb interaction between particles

\star Via the vacuum chamber

Why do Instabilities arise?

\# A circulating bunch induces electro magnetic fields in the vacuum chamber
\# These fields act back on the particles in the bunch
\# Small perturbation to the bunch motion, changes the induced EM fields
\# If this change amplifies the perturbation then we have an instability

Longitudinal Instabilities

\# A circulating bunch creates an image current in vacuum chamber

\# The induced image current is the same size but has the opposite sign to the bunch current

Impedance and Wall current (1)

\# The vacuum chamber presents an impedance to this induced wall current (changes of shape, material etc.)
\# The image current combined with this impedance induces a voltage, which in turn affects the charged particles in the bunch

$$
\int(Z(\omega) \times I(\omega)) d \omega=\int_{0}^{s} E d s
$$

Impedance + current \Rightarrow voltage \Rightarrow electric field
Resistive, inductive, capacitive

Strong frequency dependence

$$
Z=Z_{r}+i Z_{i}
$$

Real \& Imaginary components

Impedance and Wall current (2)

\# Any change of cross section or material leads to a finite impedance
\# We can describe the vacuum chamber as a series of cavities
r Narrow band - High Q resonators - RF Cavities tuned to some harmonic of the revolution frequency
r Broad band - Low Q resonators - rest of the machine
\# For any cavity two frequencies are important:

+ ω = Excitation frequency (bunch frequency)
F $\omega_{\mathrm{R}}=$ Resonant frequency of the cavity
\# If $h \omega \approx \omega_{\mathrm{R}}$ then the induced voltage will be large and will build up with repeated passages of the bunch h is an
integer

Single bunch Longitudinal Instabilities (1)

\# Lets consider:

+ A single bunch with a revolution frequency = ω
t That this bunch is not centered in the long. Phase Space
+ A single high $-Q$ cavity which resonates at $\omega_{R}\left(\omega_{R} \approx h \omega\right)$

Lower impedance \Rightarrow less energy lost in cavity

Higher impedance \Rightarrow more

Single bunch Longitudinal Instabilities (2)

\# Lets start a coherent synchrotron oscillation (above transition)
\# The bunch will gain and lose energy/momentum
\# There will be a decrease and increase in revolution frequency
\# Therefore the bunch will see changing cavity impedance
\# Lets consider two cases:

- First case, consider $\omega_{R}>h \omega$
+ Second case, consider $\omega_{R}<h \omega$

Single bunch Longitudinal Instabilities (3)

\# Case: $\omega_{\underline{R}}>h \omega$
Lower energy \Rightarrow lose
Higher energy \Rightarrow lose $\begin{aligned} & \text { Real } Z \\ & \text { less energy }\end{aligned} \quad \square \quad$ more energy
This is unstable
\# The cavity tends to increase the energy oscillations
\# Now retune cavity so that ω R<h ω

Single bunch Longitudinal Instabilities (3)

\# Case: $\omega_{\underline{\mathrm{R}}}<h \omega$
Lower energy \Rightarrow lose
Higher energy \Rightarrow lose
more energy
This is sta
$\omega_{\mathrm{R}} \mathrm{h}_{\mathrm{h}}$
\# This is is known as the 'Robinson Instability'
\# To damp this instability one should retune the cavity so that $\omega_{R}<h \omega$

Robinson Instability (1)

Robinson Instability (2)

Robinson Instability (3)

Robinson Instability (4)

Robinson Instability (5)

Higher order modes $m=2$..... (2)

Higher order modes $m=2$..... (4)

Multi-bunch instabilities (1)

\# What if we have more than one bunch in our ring.....?
\# Lets take 4 equidistant bunches A, B, C \& D
\# The field left in the cavity by bunch A alters the coherent synchrotron oscillation motion of B, which changes field left by bunch B, which alters bunch C......to bunch D, etc...etc..
\# Until we get back to bunch A....
\# For 4 bunches there are 4 possible modes of coupled bunch longitudinal oscillation

Multi-bunch instabilities (11)

\# For simplicity assume we have a single cavity which resonates at the revolution frequency
\# With no coherent synchrotron oscillation we have:

\# Lets have a look at the voltage induced in a cavity by each bunch

Multi-bunch instabilities (12)

Bunch A

Multi-bunch instabilities (19)

Lets Introduce an $n=1$ mode coupled bunch oscillation

Multi-bunch instabilities (20)

Multi-bunch instabilities (21)

Multi-bunch instabilities (22)

V
induced
phase
This residual voltage will accelerate B and decelerate D This increase the oscillation amplitude

Multi-bunch instabilities (23)

1/4 of a synchrotron period later

A \& C induced voltages now cancel

Multi-bunch instabilities (24)

Multi-bunch instabilities (25)

Multi-bunch instabilities (26)

This residual voltage will accelerate A and decelerate C
Again \Rightarrow increase the oscillation amplitude

Multi-bunch instabilities (27)

\# Hence the $n=1$ mode coupled bunch oscillation is unstable
\# Not all modes are unstable look at $\underline{n=3}$

Multi-bunch instabilities (28)

Introduce an $n=3$ mode coupled bunch oscillation

B \& D induced voltages cancel

Multi-bunch instabilities (29)

A \& C induced voltages do not cancel

Multi-bunch instabilities (30)

Multi-bunch instabilities (31)

This residual voltage will accelerate B and decelerate D
\Rightarrow decrease the oscillation amplitude

Multi-bunch instabilities on a 'scope (1)

Turn "1"

"Mountain range display"

Multi-bunch instabilities on a 'scope (2)

Add snapshot images some turns later

Multi-bunch instabilities on a 'scope (16)

\# What mode is this?
\# What is the synchrotron period?

Possible cures for single bunch modes

\# Tune the RF cavities correctly in order to avoid the Robinson Instability
\# Have a phase lock system, this is a feedback on phase difference between RF and bunch
\# Have correct Longitudinal matching
\# Radiation damping (Leptons)
\# Damp higher order resonant modes in cavities
\# Reduce machine impedance as much as possible

Possible cures for multi-bunch modes

\# Reduce machine impedance as far as possible
\# Feedback systems - correct bunch phase errors with high frequency RF system
\# Radiation damping (Leptons)
\# Damp higher order resonant modes in cavities

Bunch lengthening (1)

\# Now we controlled all longitudinal instabilities, but
\# It seems that we are unable to increase peak bunch current above a certain level
\# The bunch gets longer as we add more particles.
\# Why..?
\# What happens...?
\# Lets look at the behaviour of a cavity resonator as we change the driving frequency.

Bunch lengthening (2)

The phase of the response of a resonator depends on the difference between the driving and the resonant frequencies
$\phi \uparrow$ Response lags behind excitation

Bunch lengthening (3)

Cavity driven on resonance

$$
h \omega=\omega_{R} \Rightarrow \text { resistive impedance }
$$

Induced voltage

Bunch lengthening (4)

Cavity driven above resonance $h \omega>\omega_{R} \Rightarrow$ capacitive impedance

Induced voltage
Response leads excitation

Bunch lengthening (5)

Cavity driven below resonance $h \omega<\omega_{R} \Rightarrow$ inductive impedance

Induced voltage
Response lags behind excitation

Bunch lengthening (6)

\# In general the Broad Band impedance of the machine, vacuum pipe etc (other than the cavities) is inductive
\# The bellows etc. represent very high frequency resonators, which resonate at frequencies above the bunch spectrum

Bunch lengthening (7)

\# Since the Broad Band impedance of the machine is predominantly inductive, the response lags behind excitation

Bunch lengthening (8)

Bunch lengthening (10)

Questions....,Remarks...?

AXEL-2010
 Introduction to Particle Accelerators

Transverse instabilities:

\checkmark How do they arise
\checkmark Single-bunch effects ("head-tail" instability)
\checkmark Multi-bunch modes (very brief)
\checkmark Possible cures
\checkmark Space charge effects

Coherent Transverse Oscillation (1)

\# The complete bunch is displaced form side to side (or up and down)
\# A bunch of charged particles induces a charge in the vacuum chamber
\# This creates an image current in the vacuum chamber walls
\# How can these currents affect transverse motion?

Coherent Transverse Oscillation (2)

\# If the bunch is displaced form the centre of the vacuum chamber it will drive a differential wall current
\# This leads to a magnetic field, which deflects the bunch

Transverse coupling impedance (1)

\# We characterize the electromagnetic response to the bunch by a "transverse coupling impedance" (as for longitudinal case)

$$
\int\left(Z_{\perp}^{\swarrow}(\omega) \times I(\omega)\right) d \omega=\int_{0}^{S}(E+v \times B) d s
$$

Frequency spectrum of bunch current

Transverse E \& B fields summed around the machine
$\# \mathbf{Z}_{\mathbf{1}}\left(\right.$ exactly as $\left.\mathbf{Z}_{\mathrm{II}}\right)$ is also a function of frequency
$\# \mathbf{Z}_{\perp}$ also has resistive, capacitive and inductive components
\# However, there is one big difference between \mathbf{Z}_{\perp} \& $\mathbf{Z}_{\text {II }}$

Transverse coupling impedance (2)

\# For a vacuum chamber with a short non-conduction section the direct image current sees a high impedance (large \mathbf{Z}_{11})

\# For The differential current (current loops) is not greatly affected so \mathbf{Z}_{\perp} is unchanged by the nonconducting section
\# Thus:
t Any interruption to a smooth vacuum chamber increases $\mathbf{Z}_{\text {II }}$
\leftarrow Any structure that will support current loops increases \mathbf{Z}_{\perp}

Relationship with the longitudinal plane

\# Longitudinal instabilities are related to synchrotron oscillations
\# Transverse instabilities are related to synchrotron and betatron oscillations
\# Why....?....
\# Particles move around the machine and execute synchrotron and betatron oscillations
\# If the chromaticity $\left(\xi=\frac{\Delta \boldsymbol{Q}}{\boldsymbol{Q}} / \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}\right)$ is non zero
\# Then the changing energy, due to synchrotron oscillations will also change the betatron oscillation frequency (Q)

Single bunch modes

\# As for longitudinal oscillation there are different modes for single bunch transverse oscillations
\# We can observe the transverse bunch motion from the difference signal on a position monitor

Rigid bunch mode (1)

\# The bunch oscillates transversely as a rigid unit
\# On a single position sensitive pick-up we can observe the following:

Change in position/turn \Rightarrow betatron phase advance/turn

Rigid bunch mode (2)

Transverse displacement

 Lets superimpose successive turns

Rigid bunch mode (3)

Rigid bunch mode (4)

Rigid bunch mode (5)

Rigid bunch mode (6)

Rigid bunch mode (7)

Rigid bunch mode (8)

Rigid bunch mode (9)

Rigid bunch mode (10)

Rigid bunch mode (11)

Rigid bunch mode (12)

Rigid bunch mode (13)

Rigid bunch mode (14)

Rigid bunch mode (15)

Rigid bunch mode (16)

Rigid bunch mode (17)

Rigid bunch mode (18)

Rigid bunch mode (19)

Standing wave without node \Rightarrow Mode $M=0$

Cure for rigid bunch mode instability

\# To help avoid this instability we need a non-zero chromaticity

$$
\left(\xi=\frac{\Delta Q}{Q} / \frac{\Delta p}{p}\right)
$$

\# The bunch has an energy/momentum spread
\# The Particles will have a spread in betatron frequencies
\# A spread in betatron frequencies will mean that any coherent transverse oscillation (all particles moving together) will very quickly become incohement again.

Higher order bunch modes

\# Higher order modes are called "Head-tail" modes as the electro-magnetic fields induced by the head of the bunch excite oscillation of the tail
\# However, these modes may be harder to observe as the centre of gravity on the bunch may not move.....
\# Nevertheless, they are very important and cannot be neglected

Head-tail modes (1)

\# Head \& Tail of bunch move π out of phase with each other
\# Again, lets superimpose successive turns

Head-tail modes (8)

\# This is (obviously!) Mode:

$$
\mathbf{M}=\mathbf{2}
$$

\# Let's look more in detail at the $M=1$ "head-tail" mode
\# But first some real life examples.......

Head-tail modes (8)

\# Some real life examples:

Oscillation and the driving force (1)

\# Before continuing, first a memory refresher....

\# In order to increase the amplitude of a driven oscillator the driving force must be ahead (in phase) of the motion
\# Anyone who has pushed a child on a swing will know this.....

Oscillation and the driving force (2)

Driving force ahead of oscillation \Rightarrow increasing amplitude Makes children happy but the beam unstable INSTABILITY

Oscillation and the driving force (3)

Driving force behind the oscillation \Rightarrow decreasing amplitude Makes children unhappy but the beam stable DAMPING

$M=1$ Head-tail mode (1)

\# The $M=1$ head tail mode includes both betatron and synchrotron oscillations
\# There are many betatron oscillations during one synchrotron oscillation
\# Thus: Qs << Qh and also Qs < Qv
\# Lets set up an $M=1$ mode transverse bunch oscillation
\# This means that the particles in the tail of the bunch are deflected by the electro-magnetic field left behind by the head of the bunch

$M=1$ Head-tail mode (2)

Two particles in longitudinal phase space:
Transverse oscillation of the blue particle is exactly out of phase with red one \Rightarrow red particle is exactly out of phase with the field left by the blue particle NO EXCITATION

$M=1$ Head-tail mode (3)

However in $1 / 2$ of a synchrotron period the particles will change places

$M=1$ Head-tail mode (4)

$M=1$ Head-tail mode (5)

The energy of red particle is increasing The energy of blue particle is decreasing

$M=1$ Head-tail mode (6)

M=1 Head-tail mode (8)

$M=1$ Head-tail mode (9)

$M=1$ Head-tail mode (10)

Now they have changed places and have returned to their original energies

$M=1$ Head-tail mode (11)

If the chromaticity is zero red will still be exactly out of phase with the wake field left behind by blue STABLE CONDITION

$M=1$ Head-tail mode (12)

If Chromaticity is negative red would have made slightly less betatron oscillations than blue
Then red's transverse oscillation would lag slightly behind the wake field left by blue

INSTABLE

$M=1$ Head-tail mode (13)

If Chromaticity is positive red would have made slightly more betatron oscillations than blue Then red's transverse oscillation would be slightly ahead of the wake field left by blue

STABLE

$M=1$ Head-tail mode (14)

\# Conclusion:

- Above transition we must have a positive chromaticity to avoid the $M=1$ mode Head-Tail instability.
+ Below transition we must have a negative chromaticity.
\# The natural chromaticity of the machine without sextupoles is normally negative ($E_{\|} \rightarrow Q^{\beta}$)
\# We therefore we need sextupoles to be able to correct the chromaticity.

Transverse multi-bunch modes

\# Longitudinal multi-bunch instabilities limit the bunch intensity before the transverse modes become a problem
\# However, once a longitudinal feed back system has been built, one may need to consider a transverse feed back system too.....

Cures

\# Correct the natural chromaticity of the machine (set chromaticity negative below transition and positive above transition, but not zero)
\# Install a feed-back system.

- Detect a coherent oscillation and damp it using a transverse kicker
\# Damp transverse modes in cavities, where they will remain longest, using a damping antenna

Space Charge effects (1)

\# Between two charged particles in a beam we have different forces:

Coulomb Magnetic repulsion attraction

Space Charge effects (2)

\# For many particles in a beam we can represent it as following:

Charges \Rightarrow repulsion
Parallel currents \Rightarrow attraction

Space Charge effects (2)

\# At low energies, which means $\beta \ll 1$, the force is mainly repulsive \Rightarrow defocusing
\# It is zero at the centre of the beam and maximum at the edge of the beam

Space Charge effects (3)

\# For the uniform beam distribution, this linear defocusing leads to a tune shift given by:

\# This tune shift is the same for all particles and vanishes at high momenta ($\beta=1, \gamma \gg 1$)
\# However in reality the beam distribution is not uniform....

Space charge effects (4)

Laslett tune shift (1)

\# For the non-uniform beam distribution, this non-linear defocusing means the ΔQ is a function of x (transverse position)
\# This leads to a spread of tune shift across the beam \# This tune shift is called the 'LASLETT tune shift'

half of the
uniform tune shift
\# This tune spread cannot be corrected and does get very large at high intensity and low momentum

Laslett tune shift (2)

\# At injection into the PS Booster

Large neck tie in tune diagram

+ $E=0.988 \mathrm{GeV}, \gamma=1.053, \beta=0.313 \Rightarrow \Delta \mathbf{Q} \approx 0.3$
\# For the same beam at injection into the PS
$+E=2.3826 \mathrm{GeV}, \gamma=2.475, \beta=0.915 \Rightarrow \Delta \mathbf{Q} \approx 0.005$
\# For the same beam at injection into the SPS
r $E=14 \mathrm{GeV}, \gamma=14.93, \beta=0.998 \Rightarrow \Delta Q \approx 0.00001$
\# We accelerate the beam in the PSB as quickly as possible to avoid problems of blow-up due to betatron resonances

Questions....,Remarks...?

Beam Break-up around transition....

$<\mathrm{y}>$ [a.u.]

Exercises: Lecture 1

1) Find the products of the following matrices.
a) $\quad\left(\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right)\binom{3}{1}$
b) $\quad\left(\begin{array}{cc}\mathrm{m} & 0 \\ 0 & \mathrm{~m}\end{array}\right)\binom{\mathrm{x}}{\mathrm{y}}$
c) $\quad\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right)$
d) $\left(\begin{array}{ll}1 & 1_{1} \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
e) $\quad\left(\begin{array}{cc}1 & 0 \\ \frac{-1}{f} & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(2) The matrix relating " Q " of a machine to quadrupole currents is :-

$$
\binom{\Delta \mathrm{qx}}{\Delta \mathrm{qy}}=\left(\begin{array}{ll}
1.2 & 0.3 \\
0.2 & 2.1
\end{array}\right)\binom{\Delta \mathrm{If}}{\Delta \mathrm{Id}}=\mathrm{m}\binom{\Delta \mathrm{If}}{\Delta \mathrm{Id}}
$$

a.) What is the "reciprocal" or "inverse" of m (i.e. m^{-1}) ?
b.) What values of $\Delta \mathrm{If}, \Delta \mathrm{Id}$ are needed to change only $\Delta \mathrm{Qx}$ by 0.1 ?
(3) You can measure $\mathrm{Q} x$ and Qy in your accelerator. Suggest the measurements necessary to evaluate the matrix ' m ' in question (2)
4) A mass ' m ' is hanging on a spring, the weight is pulled down a distance x and released, the restoring force of the spring per unit displacement is ' k ', what is the frequency of oscillation? Does the frequency depend upon the initial amplitude?
5) Draw a phase plot of the motion of the weight in, 4) by plotting displacement .v. velocity.

As you increase the "phase angle" Φ, do you travel clockwise or anti clockwise around the ellipse?

Solutions 1

1) a. $\binom{14}{6}$
d. $\left(\begin{array}{cc}1 & 1_{1}+1_{2} \\ 0 & 1\end{array}\right)$
b. $\binom{m x}{m y}$
e. $\left(\begin{array}{cc}1 & 1 \\ \frac{-1}{f} & 1-\frac{1}{f}\end{array}\right)$
c. $\left(\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right)$
2) $a d-b c=2.46$

$$
\text { Inverse of matrix }=\frac{1}{2.46}\left(\begin{array}{cc}
2.1 & -0.3 \\
-0.2 & 1.2
\end{array}\right)
$$

$$
\binom{\Delta \mathrm{lf}}{\Delta \mathrm{ld}}=\left(\begin{array}{cc}
0.85 & -0.12 \\
-0.08 & 0.49
\end{array}\right)\binom{\Delta \mathrm{Qx}}{\Delta \mathrm{Qy}}
$$

$$
=\left(\begin{array}{cc}
0.85 & -0.12 \\
-0.08 & 0.49
\end{array}\right)\binom{0.1}{0}
$$

$$
\begin{aligned}
& \Delta I f=0.085 \\
& \Delta I d=-0.008
\end{aligned}
$$

3) Change If by ΔI and leave Id fixed, then measure the changes $\Delta Q x \Delta Q y$

$$
\begin{aligned}
& \text { now }\binom{\Delta \mathrm{Qx}}{\Delta \mathrm{Qy}}=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\binom{\Delta \mathrm{If}}{\Delta \mathrm{Id}} \text { But } \Delta \mathrm{d}=0 \\
& \therefore \mathrm{a}=\frac{\Delta \mathrm{Qx}}{\Delta \mathrm{ff}} \text { and } \mathrm{c}=\frac{\Delta \mathrm{Qy}}{\Delta \mathrm{If}}
\end{aligned}
$$

similarly for Id leave If fixed.

$$
\therefore \mathrm{b}=\frac{\Delta \mathrm{Qx}}{\Delta I \mathrm{~d}} \text { and } \mathrm{d}=\frac{\Delta \mathrm{Qy}}{\Delta \mathrm{Id}}
$$

4)

Resulting force $=\mathrm{Kx}$ But $\mathbf{F}=\mathrm{Ma}$. . Newton again.

$$
K x=-m \frac{d^{2} x}{d t^{2}}
$$

There is a negative sign because the acceleration always opposes the direction of motion
Therefore:

$$
\begin{align*}
& \frac{m d x^{2}}{\mathrm{dt}^{2}}+\mathrm{Kx}=0 \\
& \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\frac{\mathrm{K}}{\mathrm{~m}} \mathrm{x}=0
\end{align*}
$$

exactly as for the pendulum.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}_{0} \cos (\omega \mathrm{t}+\Phi) \\
& \frac{\mathrm{dx}}{\mathrm{dt}}=-\mathrm{x}_{0} \omega \sin (\omega \mathrm{t}+\Phi) \\
& \frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=-\mathrm{x}_{0} \omega^{2} \cos (\omega \mathrm{t}+\Phi) \\
& \therefore \omega^{2}=\frac{\mathrm{K}}{\mathrm{~m}} \quad \omega=\sqrt{\frac{\mathrm{K}}{\mathrm{~m}}}
\end{aligned}
$$

But when $\mathrm{t}=0, \mathrm{x}=\mathrm{X}$, therefore $\mathrm{x}_{0}=\mathrm{X}$ and $\varphi=0$

Solution is $x=X \cos \sqrt{\frac{K}{m}} t$
Frequency does not depend on the amplitude x
5) $x=X \cos \sqrt{\frac{K}{m}} t$

$$
v=\frac{d x}{d t}=-x \sqrt{\frac{K}{m}} \sin \sqrt{\frac{K}{m}} t
$$

Travel clockwise around plot.

