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! Coordinate Systems

% A vector has 2 or more quantities associated with it.

' fﬁ A scalar is a number: 1,2,..-7, 125, efc.....

‘ (x.y) Cartesian (r, 0) Polar
Ea t coordinates A coordinates
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1 Moving for one Point to Another

|

point (B) one needs control of both

Length and Direction. Rather clumsy |
- Is there a more

efficient way of
doing this ?

'tt To move from one point (A) to any other

3 2 equations needed !l
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( Defining Matrices (1)

xnew = axold —I_ byold
¥ So, we have:

ynew = Cxold + dyold

¥ Let's write this as one equation: B = MA
— =X
Rows =
4
¥ A and B are Vectors or Matrices %

¥ A and B have 2 rows and 1 column
¥ M is a Matrix and has 2 rows and 2 ¢
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Defining Matrices (2)

¥ This means that:

xnew = axold —I_ by old xnew a b xold
ynew = Cxold + dyold Equals ynew - C d yold

% This defines the rules for matrix multiplication.
% More generally we can thus say that...

gl -

k | ) O

which is be equal to:
i=ae+bg,j=af +bh,k=ce+dg,l=cf +dh
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Applying Matrices

¥ Let's use what we just learned and move a point

around: ty :
- o o S y2
4 B3 ¥ 3
X2 & 1 x1  x
y3 ............. \ | 3

% M1 transforms 1 to 2
¥ M2 transforms 2 to 3
¥ This defines M3=M2M1
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( Matrices & Accelerators

¥ But... how does this relate to our accelerators ?

% We use matrices to describe the various magnetic
elements in our accelerator.

 The x and y co-ordinates are the position and angle of each
individual particle.

r If we know the position and angle of any particle at one
point, then to calculate its position and angle at another .~
point we multiply all the matrices describing the magnetic
elements between the two points to give a single matrix

¥ So, this means that now we are able to calculate the
final co-ordinates for any initial pair of particle co-
ordinates, provided all the element m es are
known.
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( Unit Matrix

% There is a special matrix that when multiplied with
an initial point will result in the same final point.

X 1 0)x,
# Unit matrix : | * |[= "
(yj (0 J(yj

. b ST
¥ The result is : hew = “told
ynew . yold

¥ Therefore:
The Unit matrix has no effect

x and y
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( Going back for one Point to Another

% What if we want to go back from a final point to
the corresponding initial point?

X ro— — =
¥ We saw Tha‘rz( jz( j( "“j or B =MA
VARG QUi

¥ For the reverse we need another matrix M

A=M'B __
# Combining the two matrices M and M-' we can wr'l’re':
B=MM'B |
% The combination of M and M-! does have no 'éffec’r
thus: MM " = Unit Matrix

% M-!is the "inverse" or "reciprocal®

of M.
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( Inverse or Reciprocal Matrix

a b
¥ Tf we have: M :( j whichisa 2 x 2 matrix.
C
v Tlnon +ho inverse matr iIX IS rnlc | A b\,
1 1 d -=-b .
/8 — g
(ad —bc)\—c a

¥ The term (ad - bc) is called the determinate,
which is just a number (scalar).

10
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( An Accelerator Related Example

¥ Changing the current in two sets of quadrupole magnets (F & D)
changes the horizontal and vertical tunes (Q, & Q,).

¥ This can be expressed by the following matrix relationship:

A qp DAL —— -
O - 1 or AQO=MAI
AQ, c d)\Al,
Change I- then I and measure the changes in Q; and Q,
Calculate the matrix M

Calculate the inverse matrix M-!

Use now M to calculate the current changes (GIrand GI;)
needed for any required change in tune (GQ, and GQ,).

Al =M"AQ
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( Differential Equations

% Let's use a pendulum as an example.

% The length of the Pendulum is L.
¥ It has mass M attached to if.

¥ It moves back and forth under
the influence of gravity.

¥ Let's try to find an equation that describesjﬁé
motion The mass M makes.

% This equation will be a Differential Equation
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( Establish a Differential Equation

¥ The distance from the centre = Lt (since t is small)

% The velocity of mass M is: v = ios =
0 dt

d2(LO)

¥ The acceleration of mass M is: d= 472

¥ Newton: Force = mass x acceleration

471 . d*(LO
§% —Mgsind =M (2 )
% dt
Mg -
Restoring force due to d’ (9) g\ | A Lmall
gravity = -Mgsin® +1 =2 160=0 /
(force opposes motion) dt’ L \ L is constant
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Qolvmg the Differential Equation (1)

¥ This differential equation describes
—= the motion of a pendulum at small
amplitudes.
¥ Find a solution.....Try a good "guess”..... — =
Oscillation amplitude

¥ Differentiate our guess (twice)

o)

=—-Awsin(wt) And

equation.

—
L

l
' ‘ % Put this and our “guess” back in the original Diff
e
g
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xiolvmg the Differential Equation (2)

' ¥ So we have to find the solution for the following equation:

’ oot Joten=0

¥ Solving this equation gives: . 1/

% The final solution of our differential equation, describin
' ' the motion of a pendulum is as we expected :

‘ Oscillation amplitude Oscillation frec

R. Steerenberg, 01-Feb-2010 AXEL - 201 15



(Differen’rial Equation & Accelerators

. % This is the kind of differential equation
d (x) _ that will be used to describe the motion of
+(K)x =0 .
the particles as they move around our
accelerator.

+he ealiitinn A
RAL“I=101 SR RIOIA MG

ocr
| 1= ) )

oscillatory motion

% For any system, where the restoring force is proportional to
the displacement, the solution for the displacement will be

of the form: X = xo COS((()Z‘)

¥ The velocity will be given by:

dx ;
i = e o) S ool
dt_ 0 ( )

R. Steerenberg, 01-Feb-2010 AXEL - 2010
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(Visualizing the solution

¥ Plot the velocity as a function of displacement:

¥ x=x, cos(wr) dr

dx : / \
¥ — = —x wsin(wr) :
: g

¥ Tt is an ellipse. o
% As wt advances by 2 7 it repeats itselfs
% This continues for (wt + k 2m), with k=

1, +2,..,.etc

R. Steerenberg, 01-Feb-2010 AXEL - 2010 17
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The solution & Accelerators

¥ How does such a result relate to our accelerator or
beam parameters ?

dx . B

2 —X,0 s1nﬁot)/-

.
..
..
..
..
.
.
&
<

X=X cos(é)t)

% ¢ = wt is called the phase angle and the eHlpse is
drawn in the so called phase space dlaﬂf'am
r X-axis is normally displacement (position
= Y-axis is the phase angle or energy.
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1 - Questions....,Remarks...?

-
-
7
£
e

P
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Differential Equations
Vectors and

Matrices

Accelerators

19



AXEL-2010

Introduction to Particle Accelerators

P——

Transverse optics 1.

v Relativity, Energy & Units

v Accelerator co-ordinates

v Magnets and their configurations
v Hill's equation

Rende Steerenberg (BE/OP)
01 February 2010




( CERN Accelerators

meqirinecs b iam Saase
e TR
— ] R

# The energies in the CERN
accelerators range from
100 keV to soon 7 TeV.

way using 5 differe
accelerators.

Al vale 1
£ Fy e famean
Qgg* =0 b
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( Relativity

| velocity

SPS/LHC,-'
Einstein:

energy increases ~E = mc’
not velocity

\
)x 1 g
Newton: E=—m

« E=—my
2
R. Steerenberg, 01-Feb-2010 AXEL - 2010 3




( Energy & Momentum

% Einstein's relativity formula: |E = mc’

. : 3 | Rest mass
% For a mass at rest this will be: |[E. =m c

Rest energy

¥ Define: =L As being the ratio between the total

L)| energy and the rest energy

% Then the mass of a moving particle is: m = ym,

% Define:|f = ~| then we can write: L= e

c mc’
# [P =mV| which is always _pc oo _ES
Y p= p=
true and gives: E C

R. Steerenberg, 01-Feb-2010 AXEL - 2010



( Units: Energy & Momentum (1)

¥ Einstein's relativity formula:We all might know the
units Joules and Newton meter but here we are
talking about eV..I?

% If we push a block over a distance of 1 meter with a
force of 1 Newton, we use 1 Joule of energy.

¥ Thus:1 Nm = 1 Joule

% The energy acquired by an electron in a potential /o,f 1
Volt is defined as being 1 eV

% 1 eV is 1 elementary charge ‘pushed by 1 Velt.
% Thus:1 eV = 1.6 x 10-1° Joules

% The unit eV is oo small o be used currently, we use:
1 keV =103 eV; 1 MeV = 100 eV; 1 GeV=10°;

R. Steerenberg, 01-Feb-2010 AXEL - 2010



( Units: Energy & Momentum (2)

¥ However:

Energy

Momentum

¥ Therefore the units for momentum are GeV/c..etc:

Attention:
when p=1 energy and momentum are e

when p <1 the energy and momentu not equal

R. Steerenberg, 01-Feb-2010 AXEL - 2010



( Units: Example PS injection

v Kinetic energy at injection Ey;.+ic = 1.4 GeV
v’ Proton rest energy E;=938.27 MeV
v' The total energy is then: E = Ey;.+i. + Ep =2.34 GeV

v' We know that

v We can derive

7/=% which gives y=2.4921

0

B=fI-L| which gives p = 0.91597"

2

4 y

_Ep

v Using|p .

v'In this case: Energy z Mo

R. Steerenberg, 01-Feb-2010 AXEL - 2010
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( Accelerator co-ordinates

Vertical

Horizontal 4

It travels on the
central orbit

Longitlm

N\

/ Ya
/0 - S
Ly S
| X
v We can speak about a:
Rotating Cartesian Co-ordinate#System

R. Steerenberg, 01-Feb-2010 AXEL - 2010




( Magnetic rigidity

v' The force evB on a charged particle moving with velocity v in a
dipole field of strength B is equal to it's mass multiplied by it's
accelem’rlon ’rowards the centre of it's circular path.

v As a formula this is: o = _mv| - Radius of

Yo d curvature

Like for a stone
attached to a

rotating rope

Fa

Momentum
P=mv

v Which can be written as: B,0=m— B e
e

F
v’ Bp is called the magnetic rigidity, and if we put inall the
correct units we get: F 4

Bp = 33.356-p [K6-m] = 3.3356-p [T-m] in [GeV/c])

R. Steerenberg, 01-Feb-2010 AXEL - 2010 9
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Some LHC figures

v LHC cur'cumference 26658 883 m

v Therefore the radius|r = 424 V

v' There are 1232 main dipoles to make 360°
v This means that each dipole deviates the beam by only 0.29 °

v The dipole length = 14.3 m

v The total dipole length is thus 17617.6 m, which occupues
66.09 % of the ‘ro’ral circumference

o
5

v' The bending radius p is therefore
v p=0.6609 x 4242.9 m >lp= 28

R. Steerenberg, 01-Feb-2010 AXEL - 2010 10



( Dipole magnet

v A dipole with a uniform dipolar field deviates a particle by an
angle 6.

v' The deviation angle 6 depends on the length L and the
magnetic field B.

N Ve
v" The angle 6 can be calculated: Rak
0 (9) L 1LB RS
sin| — |[=—=—-—"-+ ; L X
2) 2p 2(Bp) ' '

v If tis small:

: (6’) 0
sin| — |=—
2) 2

v' So we canh write:

0 LB

(Bp)

R. Steerenberg, 01-Feb-2010 AXEL - 2010 11
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Two particles in a dipole field

v What happens with two particles that travel in a dipole field
with different initial angles, but with equal initial position and
equal momentum ?

/7 N\
\
. /
Particle A / \
} \
\
I
\ | .
: | I
- — = - Particle B A N s 4
| #
£ : // /
N : 5 7
~ e J La P F
e I J"‘

|
P
v Assume that Bp is the same for both par"riclesf"
v’ Lets unfold these circles......

R. Steerenberg, 01-Feb-2010 AXEL - 2010 12



( The 2 trajectories unfolded

v' The horizontal displacement of particle B with respect to

ﬁ Particle B

particle A.

displacement

v' Particle B oscillates around particle A.
v' This type of oscillation forms the basis of all

motion in an accelerator.

v’ It is called 'Betatron Oscillation’

R. Steerenberg, 01-Feb-2010
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Particle A

2s
F

|

F

J/

Tyw‘s@er‘se

o
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'Stable’ or 'unstable’ motion ?

v' Since the horizontal trajectories close we can say that the
horizontal motion in our simplified accelerator with only a
horizontal dipole field is 'stable’

v" What can we say about the vertical motion in the same
snmn' 1fioAd arreleratar 2 Te i+ ‘etahlsa’ Ar tinetahls’ And why 2
IMpHTieG acceierdior 7 4o 11 STAGUIE O Jrisidoie and wn

v What can we do to make this motion stable ?

v" We need some element that ‘focuses’ the particles back To ,

the reference trajectory.
F

|

F
F

v This extra focusing can be done using: "4

e
Quadrupole magnets #

R. Steerenberg, 01-Feb-2010 AXEL - 2010



( Quadrupole Magnet

v A Quadrupole has 4 poles, 2 north y :
and 2 south y = Magnetic
v' They are symmetrically / ’

arranged around the
centre of the magnet

%

v' There is no magnetic field
along the central axis.

S

Hyperbolic contour
X -y = constant

R. Steerenberg, 01-Feb-2010 AXEL - 2010 15




|( - Quadrupole fields
)

v" On the x-axis (horizontal) the field

is vertical and given by:

S
v On the y-axis (vertical) the
field is horizontal and given

- b
[,
7& v The field gradient, K is d

S N
' ‘ C‘S.-

-
=

v The 'normalised gradient’, k is defin

R. Steerenberg, 01-Feb-2010 AXEL - 201 16



Types of quadrupoles

b

Force on v This is a:
particles

Focusing Quadrupole (QF)

N

S N and defocuses the beam vertically.

v" Rotating this magnet by 90° will give a:
Defocusing Quadrupole

R. Steerenberg, 01-Feb-2010 AXEL - 2010 17



Focusing and Stable motion

v

v

R. Steerenberg, 01-Feb-2010 AXEL - 2010

Using a combination of focusing (QF) and defocusing (QD)
quadrupoles solves our problem of ‘unstable’ vertical motion.

It will keep the beams focused in both planes when the

position in the accelerator, type and strength of the
quadrupoles are well chosen.

By now our accelerator is composed of:

v Dipoles, constrain the beam to some closed path (orbit).

v Focusing and Defocusing Quadrupoles, provide horizontal and
vertical focusing in order to constrain the beam in transverse
directions. " 4

A combination of focusing and defocusing sections ‘rt\‘g'r"is
very often used is the so called: FODO lattice.

This is a configuration of magnets where focusjng':tand
defocusing magnets alternate and are separatedyby non-
focusing drift spaces.

18



FODO cell

v The 'FODO' cell is defined as follows:

QF

QF QD
= L1 < L2
I e
| ' (]
i FODO' cell
|
I . .
! Or like this......
Centre of
first QF
R. Steerenberg, 01-Feb-2010 AXEL - 2010
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The mechanical equivalent

v' The gutter below illustrates how the particles in our
accelerator behave due to the quadrupolar fields.

the quadrupoles focus them back
towards the central orbit.

f

/

v" How can we represent the

N\
R \\‘s
DN
et
0K focusing gradient of a
‘_\/\‘ quadr'ugolge i
mechanical nt ?
R. Steerenberg, 01-Feb-2010 AXEL - 2010

v Whenever a particle beam diverges
too far away from the central orbit

fj-r. .-

/
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The particle characterized

v' A particle during its transverse motion in our accelerator is
characterized by:

v Position or displacement from the central orbit.
v Angle with respect to the central orbit.

x = displacement
x' = angle = dx/ds

v' This is a motion with a constant restoring force. like in the
first lecture on differential equations, with ndulum

R. Steerenberg, 01-Feb-2010 AXEL - 2010 21
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Hill's equation

v These betatron oscillations exist in both horizontal and
vertical planes.

v The number of betatron oscillations per turn is called the
betatron tune and is defined as Qx and Qy.

v" Hill's equation describes this motion mathematically

Q+K(S)x =0
ds’

v' If the restoring force, K is constant in's' then this i
Simple Harmonic Motion.
v' 's'is the longitudinal displacement around the accelerator.

R. Steerenberg, 01-Feb-2010 AXEL - 2010 22




( Hill's equation (2)

v Ina real accelerator K varies strongly with 's'.

v Therefore we need to solve Hill's equation for K varying as a
function of 's’

d—’f + K(s)x =0
ds

.’j-r. .

v What did we conclude on the mechanical equivalent f/
concerning the shape of the gutter.....? " 4

v How is this related to Hill's equation.....? /

23
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x Questions....,Remarks...?

—' ‘ Dipoles, Quadrupoles,
Relativity, FODO cells
Energy & units

-
o7
o
-
o

Hill’s equation

R. Steerenberg, 01-Feb-2010 AXEL - 201




AXEL-2010

Introduction to Particle Accelerators

P——

Transverse optics 2.

v Hill's equation

v Phase Space

v Emittance & Acceptance
v Matrix formalism

Rende Steerenberg (BE/OP)
2 February 2010




Hill's equation

v' The betatron oscillations exist in both horizontal
and vertical planes.

v The number of betatron oscillations per turn is called
the betatron tune and is defined as Qx and Qy.

v' Hill's equation describes this motion mathematically
d’x

2

+ K(s)x=0

-.III-.
a*

ds

o

i
v If the restoring force, K is constant in's’' then this is

just a Simple Harmonic Motion. /./
v''s" is the longitudinal displacement around the
accelerator.

R. Steerenberg, 02-Feb-2010 AXEL - 2010



Hill's equation (2)

v' In areal accelerator K varies strongly with 's’'.
v Therefore we need to solve Hill's equation for K

varying as a function of 's’
d’x
ds

v Remember what we concluded on the mechanical
equivalent concerning the shape of the gutter...”

r
v The phase advance and the amplitude modulaﬁot%.ef the
oscillation are determined by the shape of ’rheﬁg ter.

v The overall oscillation amplitude will depend’c’m the initial
conditions, i.e. how the motion of the ball stagted.

>

+ K(s)x=0

R. Steerenberg, 02-Feb-2010 AXEL - 2010



Solution of Hill's equation (1)

d’ x

ds’

v Remember, this is a 2" order differential equation.
v’ In order to solve it lets try to guess a solution:

x =+/€.(s) cos(p(s) + ¢o)

v' € and ¢, are constants, which depend on the mmal
conditions.

v B(s) = the amplitude modulation due to the changmg
focusing strength. &

v' ¢(s) = the phase advance, which also
focusing strength.

nds on

R. Steerenberg, 02-Feb-2010 AXEL - 2010



Solution of Hill's equation (2)

v' Define some parameters

=a=_'8%
v .and let #=(6)+4) \ =0’
l+a®

x =~/ew(s)cos g Remember ¢ is still y = 3

a function of ' s

v' In order/to solve Hill's equation we differentiate
our guess, which results in:

X'= «/;cjl—wcosqﬁ —Jewd'sin ¢
s

v' .....and differentiating a second time gives:
x"=e@'" cosd—~ew'¢'sing —ew'@'sin g — swd''sin p —/ ewd" cos ¢
Bin the

v Now we need to substitute these resul
original equation.

R. Steerenberg, 02-Feb-2010 AXEL - 2010




u olution of Hill's equation (3)
\ v So we need to substitute [x=./e.B(s)cos(#(s)+ o)

and its second derivative

into our initial differential equation -

v' This gives:

lllllllllll »-HF!'PFFFP

1‘“11“;‘“!11 Iinllln!li.inllil illii mlw ||||I||> |

. sametime , T




!(”‘ Solution of Hill's equation (4)
s

-

|/ Usingthe Si terms — PN — EEIERIEED
' l v We defined - which after differentiating gives -

v Combining Rea'¢+te'¢"=0 and |f'=20a| gives:
. . v" Which is the case as: [f#'= const.=1] since

v So our guess seems to be correct

d,B d,&"ﬂa)
ds ;da) ds

R. Steerenberg, 02-Feb-2010 AXEL - 20



Solution of Hill's equation (5)

v" Since our solution was correct we have the following

for x:
X=/E.Lcosp

/ o P

, \ dw "
v For x' we have now: x=@g<>08¢—ﬁw sin ¢

v' Thus the expression for x' finally becomes:™

X'=—a+e/ fcosp—+e/ [ sing

R. Steerenberg, 02-Feb-2010 AXEL - 2010



( Phase Space Ellipse

v S0 now we have an expression for x and x’

g.fcosg

and

X'=—a+e/ fcosg—.&/ [ sing

v If we plot x' versus x as ¢ goes from O to 2xn we get an
ellipse, which is called the phase space ellipse.

¢ = 3n/2

(|

R. Steerenberg, 02-Feb-2010
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( Phase Space Ellipse (2)

v As we move around the machine the shape of the ellipse will
change as B changes under the influence of the quadrupoles

v However the area of the ellipse (ne) does %

hot change O \ i

¥ Area=m- Py I
VelLp \
&/
Je.B

v' & is called the transverse emittance and
is determined by the initial beam conditions.

v The units are meter - radians, but in practice
we use more often mm - mrad.

=

1

R. Steerenberg, 02-Feb-2010 AXEL - 2010 10
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Phase Space Ellipse (3)

I

I

F

QD QF
X’ X’ X’ ' X’
)(\\\\ﬁ________—,,// \\ (ii// \\\\________??,,//’)(

J/

v' For each point along the machine the ellipse has'a particular

orientation, but the area remains the same

R. Steerenberg, 02-Feb-2010

AXEL -

2010

11



( Phase Space Ellipse (4)

b
AKX

<= > |
- >

v" The projection of the ellipse on the x-axis gives :
the Physical transverse beam size. r 4
v' Therefore the variation of B(s) around the F 4
machine will tell us how the transverse beam '
size will vary.

A
Y

12
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Emittance & Acceptance

v' To be rigorous we should define the emittance slightly
differently.

v Observe all the particles at a single position on one turn and measure
both their position and angle.

v This will give a large number of points in our phase space plot, each point
representing a particle with its co-ordinates x, x'.

1T X

emittance —— beam
//’ = \

\ o
4 X r

F
o

acceptance

v The emittance is the area of the ellipse, which contd"ns all, or
a defined percentage, of the particles. |

v The acceptance is the maximum area of the elli
emittance can attain without losing particles.

e, which the

R. Steerenberg, 02-Feb-2010 AXEL - 2010 13



Emittance measurement

File Controls Options View Fi 8
Pls: SFTPRD  FLG6X.INSG 21 -  YPR.DCBEFTRAJINELD
FI6X.AMSG 7694 —
£20¢): 1.12 num Ap/p : 1.000 E-3
Bp Agle 0.037

F16.MSF257

[] g _J.05
Yes Y paseline Vire Nbs  Step: 0.500 xm 7.7% ADC Range

F16.MSF267

0 B
Yes 9 paseLine Wire Nbs  Step: 0.500 mm _ 9.3% ADG Range
F16.M5F277

[i SRl
Yes Y paseline Vire Nbs  step: 0.500 ym 5.4% ADG Range

Rewe Bosstion| |Single Sheb |Unfreeze| Bare Hath

rogramme in pause !!!

R. Steerenberg, 02-Feb-2010

File Plot Yisus Option

Help

EASTC Nov 12 06:27:23 2008

(VERSION Jul 9 2008 22:55:53) Measurement mode: Photomultiplier Plot.

Prepare Heas. Paranete

I |

RqulCSlCd Parameters Wire V85 ¢ Wed Mow 12 0B8:27:10 2008% » EASTC

Device V85 {0 scans) Results for VBS
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Matrix Formalism

v

Lets represent the particles transverse position and angle by
a column matrix. =

As the particle moves around the machine the values for x and
x' will vary under influence of the dipoles, quadrupoles and
drift spaces.

These modifications due to the different types of magnets
can be expressed by a Transport Matrix M

If we know x; and x;' at some point s; then we can calculate |’rs
position and angle af‘rer' the next magne‘r at position s, using:

x(s-) _ o x(s)) (a b\ x(s)
(.X(Sz)'j N (x(sl)'j N (c d j(x(sl)'j

R. Steerenberg, 02-Feb-2010 AXEL - 2010 ’ 15



( How to apply the formalism

v If we want to know how a particle behaves in our
machine as it moves around using the matrix
formalism, we need to:

v Split our machine into separate elements as dipoles,
focusing and defocusing quadrupoles, and drift spaces.

v Find the matrices for all of these components
v Multiply them all together

v Calculate what happens to an individual parti T'ezas it
makes one or more turns around the machine

R. Steerenberg, 02-Feb-2010 AXEL - 2010
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[ Matrix for a drift space

' v Adrift space contains no magnetic field.
v Adrift space has length L.

R. Steerenberg, 02-Feb-2010 AXEL - 201



1 ~ Matrix for a quadrupole

' ‘/ A quadrupole of length L.

|

N T o s

Remember B, o x and the
' deflection due to the magnetic

field is: LBy LK
e

= %
}=x1+0
' ‘ xz':—ixﬁxl' q
i [Bp)

(Bo) (B9
o

deflection

R. Steerenberg, 02-Feb-2010 AXEL - 201
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u Matrix for a quadrupole (2)

“\/ We found :
- -

' l v' Define the focal length of the quadrupole as f= (B'O)

KL
P

R. Steerenberg, 02-Feb-2010 AXEL - 2 19



( How now further ?

v' For our purpose we will treat dipoles as simple
drift spaces as they bend all the particles by the
same amount.

v' We have Transport Matrices corresponding to
drift spaces and quadrupoles.

v’ These matrices describe the real discrete focusir}g""
of our quadrupoles.

v Now we must combine these matrices with'our
solution to Hill's equation, since they describe the
same motion......

R. Steerenberg, 02-Feb-2010 AXEL - 2010 20
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A quick recap.......

v We solved Hill's equation, which led us to the
definition of transverse emittance and allowed us
to describe particle motion in transverse phase

space in ferms of pr= A= etc...

v We constructed the Transport Matrices
corresponding to drift spaces and quadrupoles.

v Now we must combine these matrices wi

solution of Hill's equation to evaluate pr= ac=
efc...

R. Steerenberg, 02-Feb-2010 AXEL - 2010




( Matrices & Hill's equation

v We can multiply the matrices of our drift spaces and
quadrupoles together to form a transport matrix that
describes a larger section of our accelerator.

v These matrices will move our particle from one point
(x(s1),X'(s1)) on our phase space plot to another (x(s,),X'(s5)),
as shown in the matrix equation below.

x(s2) | (a b)) ( x(s1)
x'(s2) e d x'(s1)
v The elements of this matrix are fixed by the elements
through which the particles pass from point s; to point s,.

v However, we can also express (x, x') as solutions of Hill's
equation.

xX=+&Lcos@| and |x'=-ae/Bcosp—+/e/[sing

R. Steerenberg, 02-Feb-2010 AXEL - 2010 ’




~ Matrices & Hill's equation (2)
G

v’ Assume that our transport matrix describes a complete turn
around the machine.

' ‘/ Therefore : 3(s,) = B(sy)

v' Let O be the change in betatron phase over one co
Turn.

' ‘\/ Then we get for x(s,):

R. Steerenberg, 02-Feb-2010 AXEL - 20 4
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R  Matrices & Hill's equation (3)

' ‘\/ So, for the position x at s2 we have...

' v Equating the 'sin’ terms gives: |- JJ&.fsinusing=-b\Je/fsing
. ‘\/ Which leads to: [b=Bsiny

v' Equating the 'cos’ terms gives:

v Which leads to:

. ‘ v" We can repeat this for c and d.

R. Steerenberg, 02-Feb-2010 AXEL - 201



- Matrices & Twiss parameters

[
»

!

' ' v These are called TWISS parameters

‘\/ Remember previously we defined:

]

v Remember also that O is the total betatron phase advance
' . over one complete turn is.

Number of betatron
oscillations per turn

v Our transport matrix becomes now:

R. Steerenberg, 02-Feb-2010



Lattice parameters

cos (+asin [sin i
—ysin i COS {—asSin i

v" This matrix describes one complete turn around our machine
and will vary depending on the starting point (s).

v' If we start at any point and multiply all of the matrices
representing each element all around the machine we can
calculate a, p, yand y  for that specific point, which thenwill

give us A(s) and Q

v If we repeat this many times for many different initial
positions (s) we can calculate our Lattice Parameters for all
points around the machine.

R. Steerenberg, 02-Feb-2010 AXEL - 2010
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Lattice calculations and codes

v' Obviously O (or Q) is not dependent on the initial position 's’,
but we can calculate the change in betatron phase, dOf= from
one element to the next.

v Computer codes like "MAD" or "Transport” vary lengths,
positions and strengths of the individual elements to obtain the
desired beam dimensions or envelope 'A(s)’ and the desired 'Q.

v Often a machine is made of many individual and idenftical
sections (FODO cells). In that case we only calculate a single
cell and not the whole machine, as the the functions 8 (s) and
du will repeat themselves for each identical section.

v' The insertion section have to be calculated se

fely.

R. Steerenberg, 02-Feb-2010 AXEL - 2010



( The §)(s) and Q relation.

v 10 =£ where 4 = Ad over a complete turn

1
v" But we also found: é( ) 565)
“uo \
Over one complete turn
1 .5 d
v This leads to:  |@=_2] ﬂ(‘;)

F
o

v' Increasing the focusing strength decreases the silze"fof the
beam envelope (8) and increases Q and vice v?zs'a.

R. Steerenberg, 02-Feb-2010 AXEL - 2010



u Tune corrections

‘ v' What happens if we change the focusing strength slightly?
¥ The Twiss matrix for our 'FODO' cell is given by:

' _

v Add a small QF quadrupole, with strength dK and length ds.
| ‘ v' This will modify the 'FODO' lattice, and add a horizontal

. _—r - - -

v The new Twiss matrix representing the modified |

R. Steerenberg, 02-Feb-2010 10



[ Tune corrections (2)

ol ey

' '/ This extra quadrupole will modify the phase advance p for the

FODO cell - &

| New phase advance L =pn+ dM¥
. ‘ Change in phase advance

v If du is small then we can ignore changes in j

' ‘\/ So the new Twiss matrix is just:
L COS i+ sin w; Asin
. ‘ — ¥ sin 4, COS L — ' SIn L,

R. Steerenberg, 02-Feb-2010 AXEL - 201 11



| Tune corrections (3)

v These two matrices represent the same FODO cell therefore:

\/ Which equals:

' _

v Combining and compare the first and the fourth term
| these two matrices gives:

Only valid for change in &} /

<<

R. Steerenberg, 02-Feb-2010 AXEL - 20 12



%1 Tune corrections (4)

Remember p, = p + du
and du is small

2cos—2sin ud

In the horizontal - but: dQ = dy/2m
' ‘plane this is a QF\ -

If we follow the same reasoning for both transverse
' planes for both QF and QD quadrupoles

B

R. Steerenberg, 02-Feb-2010
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Tune corrections (5)

Let dky = dk for QF and dkj = dk for QD

Bup Byr = B at QF and By, Byp =P at QD

Then: 1 1)
(dij_ 4r" P 4np7F (deds
don) | -1 1 dk ,ds

\47Z'ﬂhD 47Z'ﬂhF/

This matrix relates the change in the tune to the chaﬁge in

strength of the quadrupoles.
We can invert this matrix to calculate change in uadr'upole

field needed for a given change in tune

R. Steerenberg, 02-Feb-2010 AXEL - 2010
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( Dispersion (1)

v Until now we have assumed that our beam has no energy or
momentum spread:
AE Ap_g

- = and >

v' Different energy or momentum particles have different radii of
curvature (3) in the main dipoles.

v' These particles no longer pass through the quadrupoles at the
same radial position.

v Quadrupoles act as dipoles for different momentum particles.
v' Closed orbits for different momentum particles are different.

v’ This horizontal displacement is expressed as the dispersion
function D(s)

v D(s) is a function of 's’ exactly as p(s) is a functi

of 's’

R. Steerenberg, 02-Feb-2010 AXEL - 2010 15



Dispersion (2)

v' The displacement due to the change in momentum at any
position (s) is given by:

Ax/(s):D(s).%P

/ Dispersion function

Local radial
displacement due to
momentum spread

v D(s) the dispersion function, is calculated from the |Cl1"|'lC€ .
and has the unit of meters.

v The beam will have a finite horizontal size due to |’rs-'"
momentum spread.

v Inthe majority of the cases we have no ver"rlcdr';hpoles and
so D(s)=0 in the vertical plane.

R. Steerenberg, 02-Feb-2010 AXEL - 2010 16



Momentum compaction factor

v The change in orbit with the changing momentum means that
the average length of the orbit will also depend on the beam
momentum.

v' This is expressed as the momentum compaction factor, a y
where:

A
A7 o B2 |
r " p "/

v a_, tells us about the change in the length of radiu%
closed orbit for a change in momentum. /

R. Steerenberg, 02-Feb-2010 AXEL - 2010 17



( Chromaticity

' ‘\/ The focusing strength of our quadrupoles depends on the beam

momentum, 'p’

v Therefore a spread in momentum causes a spread in focusing

. S

v But Q depends on the 'k’ of the quadrupoles

B
»

' ‘ v' The constant here is called : Chromaticity

R. Steerenberg, 02-Feb-2010 AXEL - 201 18



Chromaticity visualized

v The chromaticity relates the tune spread of the transverse
motion with the momentum spread in the beam.

Focusing AQ _ . Ap

quadrupole in 0, p
horizontal plane . T
: m PUI 1ol WIIHUHIHHCI

momentum as the central
P> Po momentum will be deviated

© less in the quadrupole and will
have a lower betatron tune

~
~
_— —_— _—— — _— —_— I —_— L} —_— _— —_— *_ = _—
-
-

Za A particle with a lower
P<P momentum as the central
o) e : .
© == momentum will be deviated
QF more in the quadrupole and will
have a higher betatron tune

R. Steerenberg, 02-Feb-2010 AXEL - 2010 19



Chromaticity calculated

Ak A A
v Remember [AQ=—(fdkds)| and |[oo=—2B =) [Ak= kL
4 k P P
v' Therefore AQ [IB dS} Ap \ The gradient seen by
0 Q )b the particle depends on
Its momentum

v' This term is the Chromaticity §

v To correct this tune spread we need to increase the

quadrupole focusing strength for higher momentum particles,
and decrease it for lower momentum particles.

.r-

v’ This we will obtain using a Sextupole magnet. " |

R. Steerenberg, 02-Feb-2010 AXEL - 2010
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Sextupole Magnets

v' Conventional Sextupole
from LEP, but looks
similar for other 'warm'
machines.

v' ~ 1 meter long and a
few hundreds of kg.

v' Correction Sextupole of
the LHC

v’ 11cm, 10 kg, 500A at 2K
for a field of 1630 T/m?

R. Steerenberg, 02-Feb-2010 AXEL - 2010 '
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( Chromaticity correction

| By By = Kq.x
/ (Quadrupole)

Final "corrected” By

“““

X#
\ (Sex‘rupole)f o/

By = Ks.x? /
v' Vertical magnetic field versus horizontal displacement in a
quadrupole and a sextupole.

R. Steerenberg, 02-Feb-2010 AXEL - 2010 22




( Chromaticity correction (2)

v’ The effect of the sextupole field is to increase the magnetic
field of the quadrupoles for the positive 'x' particles and
decrease the field for the negative 'x’ particles.

v However, the dispersion function, D(s), describes how the
radial position of the particles change with momentum.

v' Therefore the sextupoles will alter the focusing field seen by |
the particles as a function of their momentum.

v' This we can use to compensate the natural chromaticity of the
machine.

R. Steerenberg, 02-Feb-2010 AXEL - 2010 23




[ Sextupole & Chromaticity

v Inasextupole fory = O we have a field By = C.x2
v Now calculate 'k’ the focusing gradient as we did for a

B -
' ' v Usmg w'hic'h after differentiating gives -
' ' v' For k we now write -

v We conclude that 'k’ is no longer constant, as it depends

' '/ So for a Ax we get - and we know that
' ‘ v' Therefore

R. Steerenberg, 02-Feb-2010
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( Sextupole & Chromaticity

v' We know that the tune changes with : |[AQ = 4L L(s)dkds
T

v' Where: |ds = sextupole length| and |dk = Ak =2C x 33(‘?3 X e?
Jo,

_1d"By
DNy

v Remember |B =C-x*| with |C

v The effect of a sextupole with length | on the particle tune'Q

as a function of Ap/p is given by:

AQ 1 d’By D(s) Ap
0 "4z P4 (B0 p

v If we can make this term exactly balance the ral

chromaticity then we will have solved our pr

R. Steerenberg, 02-Feb-2010 AXEL - 2010
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Sextupole & Chromaticity (2)

v' There are two chromaticities:
v" horizontal > &,
v’ vertical 2> §,

v" However, the effect of a sextupole depends on f(s), which
varies around the machine

v Two types of sextupoles are used to correct the chromaticity.

v One (SF) is placed near QF quadrupoles where b, is large .~
and B |, is small, this will have a large effect on ¢,

v" Another (SD) placed near QD quadrupoles, where ,6 IS
large and B, is small, will correct g, -

v' Also sextupoles should be placed where D(s) islarge, in order
to increase their effect, since Ak is proportionalito D(s)

R. Steerenberg, 02-Feb-2010 AXEL - 2010 26



1 Questions....,Remarks...?

.' ‘ Hill’s equation Lattices and tune
corrections
-

- O Dispersion and
' ‘ chromaticity

R. Steerenberg, 02-Feb-2010
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Normalised Phase Space

1 )
. By Circle of radius <8

; " 4

A 4

v By multiplying the y-axis by p the transverse phase space is
normalised and the ellipse turns into a circl

R. Steerenberg, 03-Feb-2010 AXEL - 2010



( Phase Space & Betatron Tune

v’ If we unfold a trajectory of a particle that makes one turn
in our machine with a tune of Q = 3.333, we get:

e
VT et 7008 gl
R/ RN \/2 t BY’

0

v' This is the same as going 3.333 time
around on the circle in phase space

v The net result is 0.333 times around
the circular trajectory in the
normalised phase space

v' qis the fractional part of Q

v' S0 here Q= 3.333 and q = 0.333

R. Steerenberg, 03-Feb-2010 AXEL - 2010




What is a resonance?

v' After a certain number of turns around the machine the
phase advance of the betatron oscillation is such that the
oscillation repeats itself.

v For example:

v If the phase advance per turn is 120° then the betatron
oscillation will repeat itself after 3 turns.

v This could correspond to Q = 3.333 or 3Q = 10
v ButalsoQ=23330r3Q=7 r 4

v' The order of a resonance is defined as 'n’

n x Q = integer

R. Steerenberg, 03-Feb-2010 AXEL - 2010



( Q = 3.333 in more detail

\/ \/ \/ X 1st turn
LI

P
\/ \/ \/ N 2nd turn
A (2N 2N—e 3rd turn

Third order resonant betatron o ation
3Q = 10, Q = 3.333, q 3
R. Steerenberg, 03-Feb-2010 AXEL - 2010 5




( Q = 3.333 in Phase Space

v" Third order resonance on a normalised phase space plot

2nd turn .- s
O\

I‘/ ST \‘\ 3rd turn
\ A ¢
\\ / /“
Ist turn ~~__ ] 2mq = 2n/3

R. Steerenberg, 03-Feb-2010 AXEL - 2010




Machine imperfections

v' Tt is not possible to construct a perfect machine.
v Magnets can have imperfections
v The alignment in the de machine has non zero tolerance.
g oy e

v' So, we have to ask ourselves:

v What will happen to the betatron oscillation s due to the
different field errors.

v Therefore we need to consider errors in dipoles, quadrupoles,
sextupoles, efc...

v We will have a look at the beam behaviour as a function of 'Q

v How is it influenced by these resonant conditi

R. Steerenberg, 03-Feb-2010 AXEL - 2010



Dipole (deflection independent of position)

1 y,B LS e — 1 y,B
Q=200 | \ Q=2.50
ad A e ond turn 4\ N p——
a— == Y
4nids ") \ /4/' P \
[ [ \ ! |
> : : >

/

\
g J// y L ) y
\ : J\
\\\_ /f//ﬁ 3 turn \"\_4,/}/ .

X %

v For Q = 2.00: Oscillation induced by the dipole kick
each turn and the particle is lost (15" order resona

Q = 2).

second turn,

v' For Q = 2.50: Oscillation is cancelled out eve
and therefore the particle motion is stable.

R. Steerenberg, 03-Feb-2010 AXEL - 2010



( Quadrupole (deflection « position)

Ist turn

Q =2.50

20d tyrn

\
\

+ t } g

\ \ / /

\ \ / 3 turn

\ k\_:)/
\
AN

7
\\_L

4t tyrn

v For Q = 2.50: Oscillation induced by the quadrupole
grows on each turn and the particle is lost

(2" order resonance 2Q = 5)

v For Q = 2.33: Oscillation is cancelled out eve ird turn,

and therefore the particle motion is stable

R. Steerenberg, 03-Feb-2010 AXEL - 2010
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SZXTUPOIZ (deflection o position?)

ISt turn

20d turn

3 turn

4t turn

5th turn

v' For Q = 2.33: Oscillation induced by the sextupole ki
on each turn and the particle is lost

(374 order resonance 3Q = 7)

v For Q = 2.25: Oscillation is cancelled out everyafourth turn,

and therefore the particle motion is stable

R. Steerenberg, 03-Feb-2010 AXEL - 2010 10



More rigorous approach (1)

v' Let us try to find a mathematical expression for the
amplitude growth in the case of a quadrupole error:

y'B 2mQ = phase angle over 1 turn = 6
6 Apy' = kick

a = old amplitude

Aa = change in amplitude

RS 21AQ = change in phase
/ y does not change at the kick
: >y
s y = a cos(6)
.- / ABy’ In a quadrupole Ay’
Aa So M Only.if 2mAQ is small
a = PAy sin(6) = cos
Aa = pAy' sin(6) = IP k cos(6)

R. Steerenberg, 03-Feb-2010 AXEL - 2010 11
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v' Each turn 6 advances by 2nQ
’ '\/ On the nth turn © = 6 + 2nTQ

|\ l

v" Over many turns:

. More rigorous approach (2)

Sm(G)Cos(G) 1/2 Sin (206)

This term will be ‘zero’ as it decomposes in Sin and
Cos terms and will give a series of + and - that cancel
out in all cases where the fractional tune q 2 0.5

v' So, for q = 0.5 the phase term, 2(8 + 2nnQ) is

12




( More rigorous approach (3)

v' In this case the amplitude will grow continuously
until the particles are lost.

v' Therefore we conclude as before that:
quadrupoles excite 2" order resonances for q=0.5,

v Thus for Q=0.5,15,25, 35,.etc.....

13
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More rigorous approach (4)

v' Let us now look at the phase 6 for the same quadrupole error:

2nQ = phase angle over 1 turn = 6
Apy' = kick

a = old amplitude

Aa = change in amplitude

2n/AQ@ = change in phase

y does not change at the kick
y = a cos(6)

Ina quadrupole Ay’ = |ky

/

s=A(B)cosO

27AO = A(By')cosd
a

AQ:217Z.,6’-cos(6?)-l-a-k-cos(é’)

a

R. Steerenberg, 03-Feb-2010
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”‘Aore rigorous approach (5)

Y e

| P
" v' Since: | '0s(20)+—| we can rewrite this as:

' l _ which is correct for the 15t turn

v' Each turn 6 advances by 21Q
‘\/ Over many turns:

v' On the nth turn © = 6 + 2nTQ

v’ Averaging over many turns:

R. Steerenberg, 03-Feb-2010 15



( Stopband

v |AQ= L,B.k.ds , which is the expression for the change in
4 Q due to a quadrupole... (fortunately II!)

v' But note that Q changes slightly on each turn

Related to Q

AO =1 B-k(cos(20) +1)
4

Max variation 0 to 2 |

¢ Bk
2
v' This width is called the stopband of the resonance

v Q has a range of values varying by:

v So even if q is not exactly 0.5, it must not be to0 close or at

some point it will find itself at exactly 0.5 and ‘lock on' to the
resonant condition.

R. Steerenberg, 03-Feb-2010 AXEL - 2010 16
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- Sextupole kick

' ‘\/ We can apply the same arguments for a sextupole:

. ' v’ Summing over many turns gives:

‘ ‘ 3rd order resonance term 1s* orde 5' esonhance
 ferm

' . v' Sextupole excite 15* and 3" order resonance

AT
e

R. Steerenberg, 03-Feb-2010 AXEL - 20 17
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- Octupole kick

' ‘\/ We can apply the same arguments for an octupole:

| ' 2nd order resonance

' .\/ Summing over many turns gives: term

' ' Amplitude squared

q=0.5

4t order resonance term

very important for larger amplitude parti
\

' ‘ v Octupolar errors excite 2" and 4th order resonance and are

R. Steerenberg, 03-Feb-2010 AXEL - 2010 18



( Resonance summary

v Quadrupoles excite 2"d order resonances

v Sextupoles excite 15" and 379 order resonances

v' Octupoles excite 2" and 4™ order resonances

v' This is true for small amplitude particles and low strength ;
excitations "

v However, for stronger excitations sextupoles will excite higher
order resonance's (non-linear)

R. Steerenberg, 03-Feb-2010 AXEL - 2010 19




Coupling

v' Coupling is a phenomena, which converts betatron
motion from one plane (horizontal or vertical) into
motion in the other plane.

v Fields that will excite coupling are:

v Skew quadrupoles, which are normal quadrupoles, but ’rll’red
by 45° about it's longitudinal axis.

v Solenoidal (longitudinal magnetic field)

R. Steerenberg, 03-Feb-2010 AXEL - 2010 20




Skew Quadrupole

Magnetic field

v

Like a normal quadrup
but then tilted by 4

R. Steerenberg, 03-Feb-2010 AXEL - 2010 21



( Solenoid; longitudinal field (2)

Particle trajectory

Magnetic field

R. Steerenberg, 03-Feb-2010

Beam axis

Transverse velocity
coiiponent
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1 Solenoid; longitudinal field (2)

The LPT solenoid that was used for the
initial focusing of the positrons.
' ‘ It was pulsed with a current of 6 kA
~ for some 7 us, it produced a longitudinal
magnetic field of 1.5 T.

The somewhat bigger CMS solenoid

E i At the right:
¢

R. Steerenberg, 03-Feb-2010 AXEL - 2010



Coupling and Resonance

v' This coupling means that one can transfer
oscillation energy from one transverse plane to the
other.

v' Exactly as for linear resonances there are resonant
conditions.

nQ, £ mQ, = integer

v' If we meet one of these conditions the transverse
oscillation amplitude will again grow in an.
uncontrolled way.

R. Steerenberg, 03-Feb-2010 AXEL - 2010 24




( General tune diagram

2Q, =5
QV 1

Q,-Q~=0

2"

2.5

2.25

2 225N 25 A\ 275
2.33 2.66
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Realistic tune diagram

injection

During acceleration we
change the horizontal
and vertical tune

to a place where the
beam is the least
influenced by
resonances.

F

J

g

4.0

R. Steerenberg, 03-Feb-2010
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Conclusion

v There are many things in our machine, which will
excite resonances:
v The magnets themselves
v Unwanted higher or
v Tilted magnets
v Experimental solenoids (LHC experiments)

v' The tfrick is to reduce and compensate these
effects as much as possible and then find some
point in the tune diagram where the bean is stable.

R. Steerenberg, 03-Feb-2010 AXEL - 2010 27



R Questions....Remarks...?

Resonance
Coupling

Tune diagram
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r The basic synchrotron eguations.
+ What is Transition ?
= RF systems.
= Motion of low & high enerqgy particles.
= Acceleration.
r What are Adiabatic changes?

Rende Steerenberg (BE/OP)
3 February 2010




Motion in longitudinal plane

% What happens when particle momentum increases?
— particles follow longer orbit (fixed B field)

— particles travel faster (initially)

% How does the revolution frequency change with the
momentum ?

A A
df:dv_dr But |AF_, AP
oy N
Change in J L Change in Momen’rgm
velocity orbit length compaction
_ factor
df dv dp s~
Therefore: | .= —a&
f v p

Rende Steerenberg, 03-Feb-2010 AXEL - 2010



[

R! he frequency - momentum relation

% The relativity theory says = -\

varies with momentum
(E=Eyy)

]
i
i
’

Rende Steerenberg, 03-Feb-2010



Transition

¥ Lets look at the behaviour of a particle in a
constant magnetic field.

1
¥ Low momentum B<<l,y=1) — =>&
/4
% The revolution frequency increases as momentum increases

1
¥ High momentum B=1,y>>1) —— <&
/4

% The revolution frequency decreases as momentum increases”

# For one particular momentum or energy we have: g

| F 4
—:ap o

y’ e

¥ This particular energy is called the| Transition energy

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 ’




( The frequency slip factor

4

1 1
7/ 7/tr

ap
P

¥ We found ‘j{:[}/z apJ%

¥ —>a, — Below transition —— 77 = positive
V-
1 ho

¥ —=0a, — Transition — 1] = zero

2

4

1
W }/— <& — Above transition —— 77=negative

¥ Transition is very important in proton machmes
r A little later we will see why.... P
¥ In the PS machine : yirisat ~6 GeV/c

¥ In the LHC machine : : yir is at ~55 GeV/c

¥ Transition does not exist in leptons machin
Rende Steerenberg, 03-Feb-2010 AXEL - 2010




( Radio Frequency System

¥ Hadron machines:
= Accelerate / Decelerate beams
~ Beam shaping
+ Beam measurements
= Increase luminosity in hadron colliders

% Lepton machines:
= Accelerate beams

+ Compensate for energy loss due to~
synchrotron radiation. -

(see lecture on Synchrotron Radiation)

Rende Steerenberg, 03-Feb-2010 AXEL - 2010



RF Cavity

¥ To accelerate charged particles we need a longitudinal electric
field.

¥ Magnetic fields deflect particles, but do not accelerate them.

Vv
| | ﬁ acuum

chamber

(ceramic)

@ -r. | ..
— S

¥ If the voltage is DC then there is no acceleration ‘!,.:-"'
r The particle will accelerate towards the gap but ‘dé"celer'a’re after
the gap.
% Use an Oscillating Voltage with the right Fr

Y

Rende Steerenberg, 03-Feb-2010 AXEL - 2010



A Single particle in a longitudinal electric

( field

% Lets see what a low energy particle does with this

oscillating voltage in the cavity.
V1 v

7))
7))

1st revolution period 2"d revolution period

% Set the oscillation frequency so that the
period is exactly equal to one revolution”
period of the particle.

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Add a second particle to the first one

¥ Lets see what a second low energy particle, which arrives later in
the cavity, does with respect to our first particle.

vV 1 A
A\ ) A\VA
3 \ / o =
\ / \ time
B B
"~ 15t revolution period "~ 20" revolution period :

B arrives late in the cavity w.r.t.|A f
B sees a higher voltage than|A and will therefore be'accelerated
After many turns B approaches|A "
B is still late in the cavity w.r.t.|A
B still sees a higher voltage and is still bein

% & & &% &

rated
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( Lets see what happens after many turns

A V1

A

B Time

1st revolution period

Rende Steerenberg, 03-Feb-2010 AXEL - 2010




( Lets see what happens after many turns

A V1

\.
AR

B Time

100s' revolution period ;
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( Lets see what happens after many turns

\ B time

2005t revolution per'iod'

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Lets see what happens after many turns

© 3 time

4003t revolution per'iod'

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Lets see what happens after many turns

time

| o R

5005" revolution per'iod'
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( Lets see what happens after many turns

© 3 time

600s" revolution per'iod'

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Lets see what happens after many turns

\ B time

7005t revolution per'iod'

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Lets see what happens after many turns

A V1

\.
AR

B Time

800s" revolution per'iod'

Rende Steerenberg, 03-Feb-2010 AXEL - 2010




( Lets see what happens after many turns

A V1

A

B Time

900s" revolution per'iod'

Rende Steerenberg, 03-Feb-2010 AXEL - 2010




( Synchrotron Oscillations

-
\( “

N
”

A

N

B Time

<
<

9005 revolution per'iod'

¥ Particle B has made 1 full oscillation around particle A.
% The amplitude depends on the initial phase.

Exactly like the pendulum

¥ We call this oscillation:

Synchrotron Oscillation

Rende Steerenberg, 03-Feb-2010 AXEL - 2010



The Potential Well (1)

200000+

\)1000 L

C @ Cavity voltage

A

G

- /00000

- 200000
Potential

400000 -

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @
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The Potential Well (2)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000 -
Potential

400000 -

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @

Rende Steerenberg,
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The Potential Well (3)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000~
Potential

400000 -

300000 -

Potential well

200000~

100000 -
- 200 - 100 100 200 @
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The Potential Well (4)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000~
Potential

400000 -

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @
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The Potential Well (5)

b
200000 -

@ Cavity voltage
\

- 200

- 200000~
Potential

400000 -

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @
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The Potential Well (6)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000~
Potential

400000 -

300000 -

Potential well

200000~

- 200 - 100 100 200 @
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The Potential Well (7)

b
200000 -

Nﬁ%a -

- 200 - 100

A

@ Cavity voltage

- 200000~
- 400000- —

‘ Potential

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @
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The Potential Well (8)

b
200000 -

Cavity voltage

- 200 100 100

- 200000 -
Potential

400000 -

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @

Rende Steerenberg,
03-Feb-2010 AXEL - 2010

27



The Potential Well (9)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000~
‘ Potential

400000 -

300000 -

Potential well

200000 -

100000 -
- 200 - 100 100 200 @
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The Potential Well (10)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000 -
Potential

400000 -

300000 -

Potential well

200000~

- 200 - 100 100 200 @
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The Potential Well (11)

=

200000+

-200

@ Cavity voltage
\

- 200000
Potential

400000

300000

Potential well

200000

100000

- 200 - 100 100 200 @
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The Potential Well (12)

b
200000 -

@ Cavity voltage
\

- 200 - 100

- 200000~
Potential

400000 -

300000 -

Potential well

200000~

100000 -
- 200 - 100 100 200 @
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The Potential Well (13)

‘Ei--"'
200000 -

@ Cavity voltage

-200 200

\

- 200000~
Potential

400000 -

300000 -

Potential well

200000 -

100000 -

- 200 - 100 100 200 @
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The Potential Well (14)

AN
200000 -

Niooo

- 100 pd
/0
- 200000~

Potential

A

@ Cavity voltage

- 200 100

400000 -

300000 -

Potential well

200000 -

B

100000 -

- 200 - 100 100 200 @
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The Potential Well (15)

ZOOOUW
A\
.. o . o ({ Ccavityvoltage
* )

- 100000 -

- 200000 -

Potential .
400000 -

300000 -

Potential well

200000 -

100000 -
-200 - 100 100 200 @
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( Longitudinal Phase Space

¥ In order to be able to visualize the motion in the
longitudinal plane we define the longitudinal phase
space (like we did for the transverse phase space)

A AE

At (or )

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 35




( Phase Space motion (1)

¥ Particle B oscillates around particle A
r This is synchrotron oscillation

¥ When we plot this motion in our longitudinal phase

space we geft:

X ﬁ late arrival

higher energy

+ AE
early arrival
v
O @
A
N\
— | lower ener
Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Phase Space motion (2)

¥ Particle B oscillates around particle A
r This is synchrotron oscillation

¥ When we plot this motion in our longitudinal phase

space we get: R
P 9 AE higher energy
early arrival ®)
v o\ ﬁ late arrival
At(or¢) o
\ A
¥ lower ener
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( Phase Space motion (3)

¥ Particle B oscillates around particle A
r This is synchrotron oscillation

¥ When we plot this motion in our longitudinal phase

space we geft:

X ﬁ late arrival

higher energy

+ AE
early arrival
v
@ O
A
N\
— | lower ener
Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Phase Space motion (4)

¥ Particle B oscillates around particle A
r This is synchrotron oscillation

¥ When we plot this motion in our longitudinal phase

space we geft:

X ﬁ late arrival

higher energy

+ AE
early arrival
v
A
N\
.¥
lower ener
Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Quick infermediate summary...

¥ We have seen that:

r The RF system forms a potential well in which the particles
oscillate (synchrotron oscillation).

= We can describe this motion in the longitudinal phase space
(energy versus time or phase).

= This works for particles below transition.

¥ However,

= Due to the shape of the potential well, the oscillation is'a
non-linear motion.

r The phase space trajectories are therefore no.circles nor
ellipses. -

= What when our particles are above transitio

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 40



|

Stationary bunch & bucket

. AE

AE

Bunch

Bucket

¥ Bucket area = longitudinal Acceptance [eVs]

¥ Bunch area = longitudinal beam emittance =

At

Rende Steerenberg, 03-Feb-2010
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( Unbunched (coasting) beam

¥ The emittance of an unbunched beam is just AET eVs
= AE is the energy spread [eV]
r T is the revolution time [s]

| AE

T = revolution time

Rende Steerenberg, 03-Feb-2010 AXEL - 2010




What happens beyond transition ?

% Until now we have seen how things look like below

transition 7= positive

Higher energy = faster orbit  higher F_., © next time particle will be earlier.

Lower energy = slower orbit = lower F ., © next time particle will be later.

% What will happen above transition ?
n = negative

Higher energy = longer orbit = lower F,,, © next time particélg‘-vi}i‘ll be later.

Lower energy = shorter orbit & higher F, ., & next time particle, will be earlier.

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 43



( What are the implication for the RF ?

% For particles below transition we worked on
the rising edge of the sine wave.

¥ For Particles above transition we will work on
the falling edge of the sine wave.

¥ We will see why........ 4

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 ‘ 44



( Longitudinal motion beyond transition (1)

accelerating
+ E / RF Voltage t vV

@ A —
. P
>4

time
=

decelerating

% Imagine two particles A and B, that arrive at fhe""
same time in the accelerating cavity (when V. ¢= OV)

t For A the energy is such that F,,, 4 = F.+.

r The energy of B is higher > F,,, g < Frova

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 45



|

+ E / RF Voltage t vV

Longitudinal motion beyond transition (2)

accelerating

-

\ o

/ % Vﬁme

decelerating

B

% Particle B arrives after A and experiences a
decelerating voltage.

’j_.-‘
e

"4

F
r The energy of B is still higher, but less > F., s < Frey 4
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( Longitudinal motion beyond transition (3)

accelerating
t E Y RF Voltage t vV

-

/ time
B

decelerating

% B has now the same energy as A, but arrives s__tf}l'ldllaTer'
and experiences therefore a decelerating voltage.

J

L |:r'ev B~ l:r‘ev A

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 47




|

+ E / RF Voltage t vV

Longitudinal motion beyond fransition (4)

accelerating

-

Pais

N,

B time
i decelerating

" 4
H'r

¥ Particle B has now a lower energy as A, but a[jpf()es at

the same time A~
F

o

Lol FrevB> I:r'evA
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( Longitudinal motion beyond transition (5)

accelerating
t E Y RF Voltage t vV

/A J

N,

B——® Time

decelerating

¥ Particle B has now a lower energy as A, but B__aﬁ?ives
before A and experiences an accelerating voltage.
"

J

Lol FrevB> I:r'evA
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( Longitudinal motion beyond transition (6)

accelerating
t E Y RF Voltage t vV

-

B/ :Time

decelerating

¥ Particle B has now the same energy as A, but B'still
arrives before A and experiences an accele.r’a’rmg

_f:

voltage.
= FrevB > I:r'evA

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 50




|

+ E / RF Voltage t vV

Longitudinal motion beyond transition (7)

accelerating

-

S

/ time
=

decelerating

-'.."J-.

¥ Particle B has now a higher energy as A and ar;r/ves

at the same time again.... " 4
r

o

L FrevB< I:r'evA
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|

The motion in the bucket (1)

3 e
\4 Phase w.r.t. RF
/ voltage
(L) Synchronous
particle
AE

Z RF Bucket

P

Rende Steerenberg,

03-Feb-2010

AXEL - 2010
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At (or ¢)

Bunch
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( The motion in the bucket (2)

Vv
@

@)

AE

—-

Rende Steerenberg,
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( The motion in the bucket (3)

v

AE

<

Rende Steerenberg,
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( The motion in the bucket (4)

v

@)

AE

Rende Steerenberg,
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( The motion in the bucket (b)

v

@)

AE

-

Rende Steerenberg,
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v

( The motion in the bucket (6)

AE

@)

Rende Steerenberg,
03-Feb-2010
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( The motion in the bucket (7)

v

AE

=

Rende Steerenberg,
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( The motion in the bucket (8)

AAV .

@)

AE

Rende Steerenberg,
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( The motion in the bucket (9)

A )
\%
The particle now turns in
the other direction w.r.t.
AE a particle below transition

o——O—

Rende Steerenberg,
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( Before and After Transition

+ E

> Before transition

/ At (or &)

Stable, synchronous

N P°7i°“ /\ "4 /
> A/ft(‘rr'ansi‘rion

At (or ¢)

Rende Steerenberg,
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( Transition crossing in the PS

¥ Transition in the PS occurs around 6 GeV/c

+ Injection happens at 2.12 GeV/c
 Ejection can be done at 3.5 GeV/c up to 26 GeV/c

% Therefore the particles in the PS must nearly
always cross transition.

% The beam must stay bunched

% Therefore the phase of the RF must “Jump by n
at fransition ,

Rende Steerenberg, 03-Feb-2010 AXEL - 2010 62




( Harmonic number (1)

% Until now we have applied an oscillating voltage
with a frequency equal to the revolution
frequency.

|l 0

rev

% What will happen when F.; is a multiple of f.,, 9”

&
o
F 4

Frf: h x Frev
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|

Harmonic number (2)

0000000

dpp
2 —

@ Frequency of /

Rende Steerenberg, 03-Feb-2010

Variable
for
B<1

cavity voltage

¥ Then we will have
@ h buckets

AXEL - 2010

Harmonic
number
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( Frequency of the synchrotron oscillation (1)

¥ On each turn the phase, ¢, of a particle w.r.t. the
RF waveform changes due to the synchrotron

oscillations. dg Change in
=27whAf revolution
dt N Harmonic | Lfrequency

number

¥ We know that @:_nd_E
o B

% Combining this with the above .. ‘Z = _27Ezh77-dE-fm

Change of
energy as a
| function of time

¥ This can be written as

d’¢ _—2zhn ;. dE
dt? E o dr
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|

Frequency of the synchrotron oscillation (2)

¥ So, we have:

ain or loss due to

dt’ dt

% Where dE is just the energy g
the RF system during each turn
Synchronous

particle

dE = zero

dE = V.sing

Rende Steerenberg, 03-Feb-2010
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g_‘r‘equency of the synchrotron oscillation (3)

. .ﬂf If ¢ is small then sing = ¢

¥ This is a SHM where the synchrotron oscillation
frequency is given by: e

Rende Steerenberg, 03-Feb-2010
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|

Acceleration

¥ Increase the magnetic field slightly on each turn.
% The particles will follow a shorter orbit. (F., < Fgucn)

¥ Beyond transition, early arrival in the cavity causes a gain in
energy each turn.

.................................... ‘ﬁ dE = v.Sind)s
¢

>

At (or ¢)

¥ We change the phase of the cavity such that the new |
synchronous particle is at ¢, and therefore always Sees an
accelerating voltage

¥ V, = Vsing, = VI = energy gain/turn = dE

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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( Acceleration & RF bucket shape (1)

v Q@ accelerating
synchronous
particle
@ >
. \ At (or ¢)
Stationary .
RF bucket \ Stationary
| synchronous
1 particle
AE
_— | Accelerating /
RF bucket | .
O O >
At (or ¢)

Rende Steerenberg,
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|

Acceleration & RF bucket shape (2)

=% &

acceptance

™

The modification of the RF bucket reduces the acceptance
The faster we accelerate (increasing sin ¢, ) the smaller the

Faster acceleration also modifies the synchrotron tune.

¥ For a stationary bucket (¢s = 0) we had: ( =

1

27whn

E

)1

¥ For a moving bucket (¢s # 0) this becomes:

27hn
E

j-fmcosﬁ

Rende Steerenberg, 03-Feb-2010 AXEL - 2010
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,( Non-adiabatic change (1)

Matched
bunch

—
.
ia

voltage rapidly ?

| i

U J
Rende Steerenberg, 03-Feb-2010 AXEL - 2010

- % What will happen when we increase the




.( Non-adiabatic change (2)

The bunch is now
mismatched w.r.t. to the
bucket
It will start rotating

i3

Rende Steerenberg, 03-Feb-2010 AXEL - 2010




.( Non-adiabatic change (3)

The frequency of this
rotation is equal to the
synchrotron frequency

C

_
Rende Steerenberg, 03-Feb-2010 AXEL - 2010



1 Non-adiabatic change (4)

’ a
- -
. / \
’ A
/ \
/7 \
AE ’ N
/ \
/ \
/ \
/ \
/ \
/ \
A \
: : / N
; ~ g
& /
~ /
< /
. \ 4
\ . \ /
. . \ 4
\ /
\ /
N /
- \ :
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Non-adiabatic change (9)

a
— s
1 7 S
- / \
/7 N\
7 \
AE Y \
/ \
; / \
- y N
/ \
/ \
/ \
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% / N
| S s
; X /
~ /
\ /

, \ 4
\ : \ /

; \ /

\ /
\ /
: . N\ /
- ) ‘

, ; \\——’/

Rende Steerenberg, 03-Feb-2010 AXEL - 2010



Non-adiabatic change (6)

a
— s
1 7 S
- / \
/7 N\
7 \
AE Y \
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,( Non-adiabatic change (7)

a
~

y \
/ N\

/ \
: \
‘ /
/' \
, \\ /

\ /

\ /

N\
e
v
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,( Non-adiabatic change (8)

If we let it rotate for
long time w.r.t. the
synchrotron frequency
then all the particle
with smear out, we call
that filamentation

>

At (or ¢)

)
Rende Steerenberg, 03-Feb-2010 AXEL - 2010



Non-adiabatic change (9)

Filamentation will cause
an increase in
longitudinal emittance
(blow-up)
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.( Adiabatic change (1)

% To avoid this filamentation we have to change slowly
! w.r.t. the synchrotron frequency.

% This is called 'Adiabatic’ change.

Matched
bunch

' J
Rende Steerenberg, 03-Feb-2010 AXEL - 2010



Adiabatic change (2)
.
-
-

-
e

Bunch is still
matched
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.( Adiabatic change (3)

==
by

Bunch is still
matched

-
=
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.( Adiabatic change (4)

' ‘ - Bunch is still

= - b= matched
i ‘ 4 ’ M It gets shorter

s \ )
’ N and higher
’ S J
/ N\
/ N\
‘ | 7 \

/
N |

\\

\\ //
N b
o % )
N\ /
N 7/
N 7
N 7’
~ ”’

- L
P
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Adiabatic change (5)
o
-
%3
.
-
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The longitudinal
emittance is conserved




‘ Questions....,Remarks...?

i ! Longitudinal
Phase space

Acceleration
Adiabatic &
non-adiabatic
changes
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Introduction to Particle Accelerators
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v What is it ?

v Rate of energy loss

v Longrtudinal damping
v Transverse damping
v Quantum fluctuations
v Wigglers

Rende Steerenberg (BE/OP)
4 February 2010




(Accelera’rion and Electro-Magnetic Radiation

% An accelerating charge emits Electro-Magnetic waves.

% Example:

An antenna is fed by an oscillating current and it emits
electro magnetic waves.

% In our accelerator we know to types of acceleration:
+ Longitudinal - RF system
r Transverse - Magnetic fields, dipoles, quadrupoles, etc.. .~

Force due to magnetic field s
gives change of direction )ew‘rons aw.
\‘F= dp = d(m-v) =m-a
| dt N

—~ N\ .
Momentum change  Direction changes but not magnitude

o
o
"

¥ So: ‘m-ﬁ‘zconstant

R. Steerenberg, 04-Feb-2010 AXEL - 2010




( Rate of EM radiation

% The rate at which a relativistic lepton radiates EM

energy Is :

r Longitudinal o« square of energy (E?)

Force // velocity

Force L velocity

+ Transverse o« square of magnetic field (B?)

Py oc E2B?

¥ In our accelerators:

r Transverse force > Longitudinal force

"4
" 4

r Therefore we only consider radiation due T%tﬂjnsverse

acceleration’ (thus magnetic forces)

R. Steerenberg, 04-Feb-2010
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( Rate of energy loss (1)

¥ This EM radiation generates an energy loss of the
particle concerned, which can be calculated using:

| Electron radius
e Velocity of light
p— 2 e p{; | Total energy
_l 3(m 02)3 ' ° T T—— 'Accelerating’ force
\ 0 /£
X | Lepton rest mass

constant

% Our force can be writtenas: F = evB = ecB

¥ Thus: P=£2 4 jEzB2 but (Bp):Z:E'B\__-;

3(mocz)3 ec v

.I{..' C

2 rc \E“ "
3(mc’) )pz

¥ Which gives us: P=(

R. Steerenberg, 04-Feb-2010 AXEL - 2010




r

!€Eafe of energy loss (2)

' 'ﬂ- We have: - Wwhich gives the energy loss

% We are interested in the energy loss per revolution
' for which we need to integrate the above over 1 turn

r
' ' ¥ However:

¥ Finally this gives:
. ‘ Gets very large if

E is large !!!
o

Bending radius
inside the magnets

Lepton
energy
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( What about the synchrotron oscillations ?

% The RF system, besides increasing the energy has to
make up for this energy loss u.

% All the particles with the same phase, ¢, w.r.t. RF
waveform will have the same energy gain AE = Vsin¢

¥ However,
- Lower energy particles lose less energy per turn

 Higher energy particles lose more energy per TurN

¥ What will happen...???

R. Steerenberg, 04-Feb-2010 AXEL - 2010




( Synchrotron motion for leptons

A
AE T \\
”~ ~ p
2 D CE
7’ ~
, o N
7 ~ p
/ \\
I .’ > g
~ /’
\\ O 7 A‘l’ (Or' ¢)
~ Ve
~ P
~ 7’
\\ //
\ _____ ’

% All three particles will gain the same energy from)he
RF system

% The black particle will lose more energy tha
one.

¥ This leads to a reduction in the e
since u varies with E%.
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( Longitudinal damping in numbers (1)

% Remember how we calculated the synchrotron
frequency.

# It was based on the change in energy: dE =V sing
% Now we have to add an extra term, the energy loss du

.t dE = VSin¢ —du becomes d—E = frevV Sin¢ ¥ ﬁev du

dt
% Our equation for the synchrotron oscillation becomes
then: Extra term for
energy loss
LO4[2T g 2y 2T g

R. Steerenberg, 04-Feb-2010 AXEL - 2010
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R!ongi’rudinal damping in numbers (2)

du du dE

E | dE E

e

i % Can be written as:

% This now becomes: - _du 1 d¢
i3 ¥ a i P E g,
' ' ¥ The synchrotron oscillation differential

equation becomes now:

-
P

R. Steerenberg, 04-Feb-2010
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( Longitudinal damping in numbers (3)

¥ So, we have:

d’¢ du 1 dg (wm
— +
dt dE Trev dt E

Srw -quﬁ =0

du 1

2 : u _du 1
The damping coefficient | & y

¥ This confirms that the variation of u as a function
of E leads to damping of the synchrotron
oscillations as we already expected fromour
reasoning on the 3 particles in the longitudinal
phase space.

10
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( Longitudinal damping time

: . — du 1
# The damping coefficient is given by: j@== =
CE" du 4CE’
¥ We know that u=- and thus — ~=-
P dE \ yo,
¥ S mately: 9 __ 4= _ CE Not totally
Sapproximatelyann . llias correct since
dE E o, EE
¥ For the damping time we have then:
Energy
. . 1 E‘T/ Revolution time
Damping time=—=——- CE"
a  Au- oc «— Energy loss/turn

% The damping time decreases rapidly ( s we

increase the beam energy.

R. Steerenberg, 04-Feb-2010 AXEL - 2010 11



( Damping & Longitudinal emittance

% Damping of the energy spread leads to shortening
of the bunches and hence a reduction of the
longitudinal emittance.

AE

4 AE /‘ Initial
/ Later..

'

R. Steerenberg, 04-Feb-2010
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|

Some LHC numbers

% Energy loss per turn at:
r injection at 450 GeV = 1.15 x 10! eV
r Collision at 7 TeV = 6.71 x 103 eV

% Power loss per meter in the main dipoles at 7 TeV is
0.2 W/m

% Longitudinal damping time at:
r Injection at 450 GeV = 48489.1 hours F 4
= Collision at 7 TeV = 13 hours

R. Steerenberg, 04-Feb-2010 AXEL - 2010 13




( What about the betatron oscillations ? (1)

¥ Each photon emission reduces the transverse and longitudinal
energy or momentum.

¥ Lets have a look in the vertical plane:
Emitted photon (dp)

total momentum (p)

momentum lost dp \ __
\ / ideal Tr'ajecfor)f
2 N / " 4

A / r 7
particle / s

particle trajectory

R. Steerenberg, 04-Feb-2010 AXEL - 2010 14
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What about the betatron oscillations ? (2)

¥ The RF system must make up for the loss in longitudinal
energy dE or momentum dp.

¥ However, the cavity only supplies energy parallel to ideal

trajectory.
/ /ideal trajectory

new particle trajectory " ;

old particle trajectory ,/l

¥ Each passage in the cavity increases only the longi#tidinal
energy.

¥ This leads to a direct reduction of the amplitu
betatron oscillation.

of the

R. Steerenberg, 04-Feb-2010 AXEL - 2010 15



( Vertical damping in numbers (1)

% The RF system increases the momentum p by dp or

energy E by dE —|  Tan(a)=a
p; = transverse momentum ple total momentum Lo
=S
0 4 p
"""" ;,.,;.f:j:.:. SN
dp is small
. (., d
p+ dp r\ p P )
¥ The change in transverse angle is thus given by:
ap JdE
dy'= —yp'2 = —_y'—
Y y' z y' I

R. Steerenberg, 04-Feb-2010 AXEL - 2010 16



( Vertical damping in numbers (2)

¥ A change in the transverse angle alters the betatron
oscillation amplitude

By da = f.dy'.sinf

5 dE

/ da——ﬂyf .sin &
a.sin @
g \ dE

7 xy = ,By—smé’
2 ’ dE

da)=—a— Z sin®@
a / / i E
da
Summing over many < dCl> 1 dE
photon emissions S =
a 2 F

R. Steerenberg, 04-Feb-2010 AXEL - 2010 ' 17
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Vertical damping in numbers (3)

da 1 dE dE is just the change in
¥ We found: u ==—_— energy per furnu
a 2= (energy given back by RF)

% The change in amplitude/turn is thus: <da> = Aa

% Which is also: Ad iy
ich is also: =38
2F
da i Change in amplitude/second
¥ G —_— = —
(e At YET (5 — Revolution time
B
4 This shows exponential damping with coefficient: & = YET
. 2ET | (similar to longitudinal case)
Damping time =
U <
R. Steerenberg, 04-Feb-2010 AXEL - 2010 18




( Horizontal damping in numbers

¥ Vertically we found: (da) _ — i

a 2.k,
% This is still valid horizontally

% However, in the horizontal plane, when a particle

changes energy (dE) its horizonta

Too | OKsince f=1

position changes

dr dp dE ” a is related to D(s) in the |
7:0519;:05])?:%5 bending magnets
da u
% horizontally we get <—> =—(1-2a)—
a
. . . 2ET Ok provided
¥ Horizontal damping time: y a0

R. Steerenberg, 04-Feb-2010 AXEL - 2010

19



( Some intermediate remarks....

¥ Transverse damping time at:
= Injection at 450 GeV = 48489.1 hours
+ Collisionat 7 TeV = 26 hours

¥ Longitudinal and transverse emittances all shrink as a function of
Time.
¥ Damping times are typically a few milliseconds up to a few
seconds for leptons.
¥ Advantages:
+ Reduction in losses
+ TInjection oscillations are damped out
= Allows easy accumulation
= TInstabilities are damped
¥ Inconvenience:
+ Lepton machines need lots of RF power, therefore LEP was stopped

¥ All damping is due to the energy gain from the ystem an not
due to the emission of synchrotron radiatio

R. Steerenberg, 04-Feb-2010 AXEL - 2010 20



( Is there a limit to this damping ? (1)
% Can the bunch shrink to microscopic dimensions ?

% No! , Why not ?

% For the horizontal emittance ¢, there is heating term
due to the horizontal dispersion.

¥ What would stop dE and ¢,of damping to zero? .~
% For ¢, ,there is no heating ferm. So g, can gep-ﬂv'ér'y

small. Coupling with motion in the horizontal plane
finally limits the vertical beam size

R. Steerenberg, 04-Feb-2010 AXEL - 2010 21



( Is there a limit to this damping ? (2)

% In the vertical plane the damping seems to be limited.

% What about the longitudinal plane ?

% Whenever a photon is emitted the particle energy
changes.

% This leads to small changes in the synchrotron
oscillations.

% This is a random process.

% Adding many such random changes (quantum
fluctuations), causes the amplitude of the
synchrotron oscillation to grow. |

¥ When growth rate = damping rate then damping
stops, which give a finite equilibrium y spread.

R. Steerenberg, 04-Feb-2010 AXEL - 2010 22



( Quantum fluctuations (1)

¥ Quantum fluctuation is defined as:

r Fluctuation in number of photons emitted in one damping
Time

% Let E, be the average energy of one emitted photon

/Revolu‘rlon time

it Damping time oc ﬂ seconds = E turns
u u

Energy loss/turn

% Number of photons emitted/turn = = s

# Number of emitted photons in one
damping time can then be given by:

uE_E

Eu B

R. Steerenberg, 04-Feb-2010 AXEL - 2010 23



( Quantum fluctuations (2)

E
¥ Number of emitted photons in one damping time = -
¥ Ep

E Random

¥ r.m.s. deviation = E process

/ Energy of one
emitted photon

b E
¥ The r.m.s. energy deviation = \EE = EE,
¥ The average photon energy E o E?
¥ The r.m.s. energy spread « E2

¥ The damping time o E?

Higher energy = faster longitudinal damping,
but also larger energy spread

R. Steerenberg, 04-Feb-2010 AXEL - 2010 ‘ 24
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Wigglers (1)

# The damping time in all planes o

ET

u

¥ If the loss of energy, u, increases, the damping time
decreases and the beam size reduces.

% To be able to control the beam size we add ‘wigglers’

N

S

N

S

N

S

N

S

N

S

N

S

beam

S

N

S

N

S

N

S

N

S

N

S

% Tt is like adding extra dipoles, however fhe wiggles
does not give an overall trajectory cha

increases the photon emission

R. Steerenberg, 04-Feb-2010
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( Wigglers (2)

% What does the wiggler in the different planes?

¥ Vertically:
r We do not really need it (no heating term), but the vertical
emittance would be reduced
¥ Horizontally:
+ The emittance will reduce.
r A change in energy gives a change in radial position

= We know the dispersion function: dr = D(S)d_E

/)

+ In order to reduce the excitation of horizontal os'éilla’rions
we should put our wiggler in a dispersion freearea (D(s)=0)

R. Steerenberg, 04-Feb-2010 AXEL - 2010 26




( Wigglers (3)

¥ Longitudinally:
= The wiggler will increase the number of photons emitted
= It will increase the quantum fluctuations
r It will increase the energy spread

¥ Conclusion:

Wigglers increase longitudinal emittance and
decrease transverse emittance

oF

y
4

R. Steerenberg, 04-Feb-2010 AXEL - 2010
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x Questions....Remarks...?

Synchrotron Damping

radiation
Quantum

fluctuations
J vvvvvvvvvvvv (e 4

Wigglers
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Overview

% How to get a beam into and out of circular
accelerators and storage rings.

% The wide range of requirements will require
several different solutions

t injection into a synchrotron from a LINAC
 transfer between two synchrotrons

t extraction to an end-user facility
 accumulation of particles, to increase intensity
t dealing with different particles
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> ( CERN Accelerators

— TR

el p s

——

meqirinecs b Siam Saase
— T

— O

¥ Many transfer lines.

# Different types of:
% Injection
¥ Ejection
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( Transfer Lines (1)

% Particles trajectories in transfer lines are treated
the same way as in a circular machine, with the only
difference that they pass only once.

¥ We use:
 Dipoles to deflect particles
+ Quadrupoles to focus particles transversely
% This leads to betatron oscillations and functions

% We can use the 2x2 matrices to describe the
transverse motion of the particle

G- o))

¥ But... the transfer line is not closed

n itself |
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ﬁ' ransfer Lines (2)

% The particles trajectories in transfer lines are not
closed

ﬂ# This means that the

= initial lattice parameters # final lattice parameters

ﬂ Due to this the tfransfer matrix gets slightly more
complicated.




pe

R Transfer Lines (3)
~—

-]

' lﬁc For B, =B,, o, = a, etc this reduces to the matrix we
_ had for our accelerator, but for transfer lines we mu
' ‘ retain the full matrix.

' £ We can calculate the Twiss parameters exactly

our accelerator.

However, there are an infinite number of selutions...
since for any value g, there will give a p

' ‘u solution for 5,
Thus the final a, B etc. depends o
L

R. Steerenberg, 04-Feb-2010 AXEL - 2010 6



( Transfer between machines (1)

# The initial phase space ellipse will be determined by
the accelerator (1), from which the beam is being
extracted. (point A)

% Then we calculate the transport matrix that
describes the transport line and we caletlate the
final ellipse at point B

R. Steerenberg, 04-Feb-2010 AXEL - 2010



( Transfer between machines (2)

¥ However, machine (2) will have it's own prede’rermmed
transverse phase space ellipse at B. J_,----

% If the phase space ellipse, which arrives fr sm the
transfer line is different (which can be the case)
then.... what will happen to the beam?2

R. Steerenberg, 04-Feb-2010 AXEL - 2010



| Transverse phase space

Injected beam
rotates inside
the new ellipse

-
&3
.

"smear out” of
. phase space and

emittance blow-
up begins

~emittance
_ blow-up
. complete
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( Transverse matching

¥ Set initial B, a;.. =B, a for machine 1 at point A

¥ Calculate the transfer matrix so that B,, a,.. =8, a
for machine 2 at point B

# Be careful with the envelope consideratiohs in the
transfer line (emittance vs acceptance)

¥ Variables = quadrupole strengths an

Itions

R. Steerenberg, 04-Feb-2010 AXEL - 2010 10



( Single turn injection (1)

¥ With a single turn injection we inject one or more
bunches into a synchrotron in a single turn.
(revolution period of receiving machine)

¥ Elements involved:
= Transfer line
= Septum magnet
+ Fast kicker magnet

= Synchrotron (receiving machine)
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( Single turn injection (2)

septum
\\\ | Injection trajectory
\

kicker

\ o ( . /
s rbit | -
channel / l \

X |
Injection closed o

| Septum
X= \/ﬂ &i +‘\/ﬂ ‘& +D{ D ]—I—xco+x¢*h'd‘”€“

0= A ps > F
\ Bs Presin (L (s—k)) /— pk>>
\\ Minimize & to reduce kicker s’rr"eng‘rh “(S >’!§;“‘$ n+1)11/ 2

12
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g Injection oscillations (1)

Error (8) Displacement

septum kicker

5 = x
\/Ba-Bo sin(p)

R. Steerenberg, 04-Feb-2010 AXEL - 2010




( Injection oscillations (2)

% Any residual transverse oscillation will lead
to an emittance blow-up

% Measurement methods, FFT analysis of one
BPM signal, compare single-turn and closed
orbit

% Possible that injection is well corrected,
but there is still an emittance blow-up

% Matching...

R. Steerenberg, 04-Feb-2010 AXEL - 2010 ) 14



( Multi-turn injection for hadrons (1)

¥ For hadrons the beam density at injection is either
limited by space charge effects or by the injector
(heavy ions...)

¥ Usually we inject from a LINAC into a synchrotron

¥ We cannot increase charge density, so we fill the
horizontal phase space to increase injected intensity.

¥ Elements used
= Septum

~ Fast beam bumpers, made out of 3 or 4 dipoles for more
flexibility, to create a local beam bump '

R. Steerenberg, 04-Feb-2010 AXEL - 2010 15



- Multi-turn injection for hadrons (2)

~ bumper 1 bumper 3

unperturbed orbit

R. Steerenberg, 04-Feb-2010 AXEL - 2010 16



( Multi-turn injection for hadrons (3)

¥ Lets have a look at a real example...
% Could be the PS Booster
% Let gh = .25 (fractional tune)

% Let us have a look what happens in phase
space turn after turn

A~

R. Steerenberg, 04-Feb-2010 AXEL - 2010 ‘ 17



( Multi-turn injection for hadrons (4)

30

20 | N

10 |

0F

-10 F

-20 F

=30
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( Multi-turn injection for hadrons (5)

30

A

20

10 |

0F

-10 F

-20 F

=30

10 20 30 40 50
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( Multi-turn injection for hadrons (6)

30
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( Multi-turn injection for hadrons (7)

30

A

20

18O

-20 F

=30
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( Multi-turn injection for hadrons (8)

30

A

20 r

10 ¢
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( Multi-turn injection for hadrons (9)

30

A

20 |

-10 F

-20 F

-30
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( Multi-turn injection for hadrons (10)

30
x'T
20

-30
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( Multi-turn injection for hadrons (11)

30

A

20 |

-20

=30
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( Multi-turn injection for hadrons (12)

30
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( Multi-turn injection for hadrons (13)

30

A

20 |

-20 |

=30
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( Multi-turn injection for hadrons (14)

30

A

20 |

-20

=30
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( Multi-turn injection for hadrons (15)

30

A

20 r

-20 |

-30
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( Multi-turn injection for hadrons (16)

30
XT 20 r
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( Multi-turn injection for hadrons (17)

30

A

20 r

10

0F

-10 }

-20 |

-30
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( Multi-turn injection for hadrons (18)

30

A

20

10 |

0F

-10 F

-20 F

=30

10 20 30 40 50

% Now the horizontal phase acceptance i
completely filled and acceleration ¢
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( Multi-turn injection for hadrons (19)

% We need to control the tune Qh and the beam bump
accurately
+ in order to reduce losses
r in order to fill the horizontal phase space most efficiently
% We need a very thin septum

 in order to minimize the losses on subsequent turns

 in order to reduce phase space dilution.
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( Multi-turn injection for hadrons (20)

¥ The optimum reduction in the orbit bump/turn can
be calculated using:

Septum
thickness
Horizontal
fractional tune 1 .

/ \ Beam in ﬂ;e

Beam in the acceler'a’ror'
injection channel
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( Charge exchange injection (1)

put

R. Steerenberg, 04-Feb-2010 AXEL - 2010

The charge exchange extraction is already operational in
different laboratories around the world.

At CERN it will be used for the 15t time when Linac 4 will be
ready to deliver beam to the PS Booster
The charge exchange injection works as following:
 Transport H- ions from the linac to the synchrotron
= Strip the H- ions to protons inside the ring acceptance
In order to strip the ions, but no to blow-up the beam:to

much we carefully need to consider the stripping foil
requirements

It has advantages over normal multi-turn protes injection

35
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Charge exchange injection (2)

.
.
.
4,

5
N,
v,
4,
o
v,
*x
4,
[

Stripping foil
= / Injected protons

_ .... _ /_ _
...
= et \

\ S

beam bumpers
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( Charge exchange injection (3)

N

o4

R. Steerenberg, 04-Feb-2010 AXEL - 2010

It makes it possible to "beat” Liouville’s theorem, which says that
emittance is conserved.

We paint a uniform transverse phase space density by modifying
the beam bump and by and changing the steering of the injected
beam
The foil thickness should be calculated to strip most ions (99%)
r 50 MeV - 50 ug.cm-2
= 800 MeV - 200 ug.cm
Types of foils that can be used:
= Carbon
= Aluminum

To avoid excessive foil heating and unnecessary beam blow up the

injection bump is reduced to zero as soon as theinjection is
finished

37




( Lepton injection

% We can apply the same fast injection as for protons
however, there are differences with respect to
proton or ion injection

¥ Remember lepton motion is damped in our
accelerator

# We can use transverse and longitudinal damping to
perform:
r Betatron accumulation (most lepton machines)

= Synchrotron accumulation (was used in LEP)__,..
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( Betatron accumulation (1)

septum

. . / injected bunch

kicker 2 X i

kicker 1
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( Betatron accumulation (2)

_—~ acceptance

Y

stored beam
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( Synchrotron accumulation (1)

Momentum of
injected beam is lower
than momentum of
circulating beam

kicker 2

——————

kicker 1 X, =D. Ap/p
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Synchrotron accumulation (2)

1E
stored beam Ky
S i

RF Bucke’r

\%

injected beam

o // Injection 1
) Turn =N

In ioh 2
Turn N + 0.5Q,
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( Single turn ejection (1)

¥ With a single turn ejection we eject one or more
bunches out of a synchrotron in a single turn.
(revolution period)

¥ Elements involved:
Synchrotron

Bumper

#
-

r Septum magnet
r Fast kicker magnet

-

Ejection synchronization
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.( Single turn ejection (2)

\\

kicker

6 (

Ty 4

closed orbit |

' ‘ x=m+1/ S8+Ds[d]lge+c}lg]+xw+xg
o= X

’ ‘ \ Ps PreSIn (L k—s))

v

)
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Multi-turn extraction (1)

% Many physicists would like to have a continuous flux
of particles.

% However, this is not possible with our machines and
the way we work.

¥ We try to approach this using multi-turn extractions

% We know two types of multi turn ejection:

= Non-Resonant multi-turn ejection (few turns)
e.g.. PS to SPS at CERN for high intensity
proton beams (>2.5 10!3 protons)

r Resonant extraction (millisecs to hours)
Spills to experiments from a synchroetron
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Bl

onh-resonant multi-turn extraction (1)

. machine

acceptance

septum

' beam
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[T N

1st turn

Set Qh=...25
- and apply

extracted beam

¥

~ abeam
~ bump
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extracted beam

.

l‘
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extracted beam

R. Steerenberg, 04-Feb-2010



( Non-resonant multi-turn extraction (2)

¥ Particularities:
+ Use a thin septum, to reduce losses

Use two septa (electro-static, magnetic)

<

= First septum is moveable, position and angle

r Only gives a few turns... (>>10'° particles/turn)

= Many users need <10° particles/second

% For very high intensity beams the beam losses may
be too important to use this method.

# Hands on maintenance becomes difficuli:
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( A novel Multi-Turn Extraction

% The majority of the losses are produced on the thin
septum and are a function of beam intensity and density

% If we could de-populate the beam at the places where the
septum will slice the beam, we could reduce these losses.

% Using strong non-linear elements like sextupoles and
octupoles and programming the correct tune, one can
create stable islands in phase space.

% The trick now is to capture beam in these stable islands
and to have no particles in between the islands:.
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Capture beam in stable islands
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50251
02401
50.247 [
L0245 F
1 | 1 | 1 | 1 | L
0243, 4000 8000 12000 16000 20000
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Tune variation
P Izum
0.36 - — 1750
I — 1500
Phase space
: 012 — 1250 "4
portrait
— 1000 /
012 F
750 /
500
-0.36
250
V%6 103 01z 01z 036 06 °

Courtesy of M. Giovannozzi
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Extract the beam

At the septum location % A slow bump will move the
islands towards the septum

% A fast bump will make the
island jump to the other
side of the septum

# The tune of 6.25 will make
that the beam will rotate
90 degrees in phase space
each revolution period

% The four islands will be
extracted

¥ The central part will be extracted using a fast kicker
¥ This way there are no particles lost on the septum blade.

¥ The first beams to the SPS for CNGS were extracted this
way end of 2008.

Bfielw = 0 |Bfieg 2 O

Courtesy of M. Giovannozzi
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( Resonant extraction (1)

¥ How to extract beam over thousands of turns ?

% The idea is that few particles jump to the other
side of the septum every revolution period

¥ Resonant transverse motion makes the beam size
Increase

% Set 3Q,, = integer (third order resonance)

% Use sextupoles to excite this resonance with
correct phase...

% Use a horizontal beam bump at the extraction
septum, to ensure that the septum is theaperture
limitation |

R. Steerenberg, 04-Feb-2010 AXEL - 2010
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( Resonant extraction (2)
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septum

/

( Resonant extraction (3)
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( Resonant extraction (4)

septum /

to extraction
channel

turn “n-6"’

Why is the septum angle is iffiportant?
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( Resonant extraction (5)

# The beam can be extracted in different ways:

= Move the resonance into the beam (change the current in
the quadrupoles)

= Move the particles onto the resonance (change the radial
position of the beam)

% Both principles can generate beam spills ranging
from several milliseconds up to several hours.
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( Instabilities (1)

% Until now we have only considered independent
particle motion.

¥ We call this incoherent motion.

t single particle synchrotron/betatron oscillations
 each particle moves independently of all the others

% Now we have to consider what happens if all
particles move in phase, coherently, in response to
some excitations

Synchrotron & betatron
oscillations

R. Steerenberg, 05-Feb-2010 AXEL - 2010




( Instabilities (2)

¥ We cannot ignore interactions between the
charged particles

# They interact with each other in two ways:

Space charge
effects, intra beam
scattering

 Direct Coulomb interaction between particles

Longitudinal and
transverse beam
instabilities

= Via the vacuum chamber o

R. Steerenberg, 05-Feb-2010 AXEL - 2010




( Why do Instabilities arise?

% A circulating bunch induces electro magnetic
fields in the vacuum chamber

% These fields act back on the particles in the bunch

¥ Small perturbation to the bunch motion, changes
the induced EM fields

% If this change amplifies the perturbation then we.
have an instability

R. Steerenberg, 05-Feb-2010 AXEL - 2010



( Longitudinal Instabilities

% A circulating bunch creates an image current in
vacuum chamber

+
ﬁ / vacuum chamber
= &

b +
+ T ——
- \
induced charge

% The induced image current is the same size but
has the opposite sign to the bunch curr

R. Steerenberg, 05-Feb-2010 AXEL - 2010



(Impedance and Wall current (1)

% The vacuum chamber presents an impedance to this
induced wall current (changes of shape, material etfc.)

% The image current combined with this impedance

induces a voltage, which in furn affects the charged
particles in the bunch

[(Z(w)x I(®)) do = [ E ds
P / "N

74 A 5 | o

Impedance + current = voltage = electric field

2

Resistive, inductive, capacitive

=Z:Zr+iZJ
r

Strong frequency N
dependence

Real & Imaginary components

R. Steerenberg, 05-Feb-2010 AXEL - 2010 ’ 6



(Impedance and Wall current (2)

% Any change of cross section or material leads to a
finite impedance

¥ We can describe the vacuum chamber as a series of
cavities

+ Narrow band - High Q resonators - RF Cavities tuned to
some harmonic of the revolution frequency

 Broad band - Low Q resonators - rest of the machine
% For any cavity two frequencies are important:

r o = Excitation frequency (bunch frequency)

r ox= Resonant frequency of the cavity

% If ho ~ ok then the induced voltage will be large and
wi llW’rh repeated passages of the bunch

hisan
infeger
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( Single bunch Longitudinal Instabilities (1)

¥ Lets consider:
+ A single bunch with a revolution frequency = ®
= That this bunch is not centered in the long. Phase Space
r A single high-Q cavity which resonates at oy (0g~ ho)

Higher impedance = more

‘ Real Z energy lost in cavity
Lower impedance = less Cavity impedance
energy lost in cavity g

[
»

ho g Frequenc
R. Steerenberg, 05-Feb-2010 AXEL - 2010




( Single bunch Longitudinal Instabilities (2)

% Lets start a coherent synchrotron oscillation
(above transition)

% The bunch will gain and lose energy/momentum

NN

¥ There will be a decrease and increase in revolution
frequency

% Therefore the bunch will see changing cavity
impedance

% Lets consider two cases:
r First case, consider oy > ho
r Second case, consider oy < ho

R. Steerenberg, 05-Feb-2010 AXEL - 2010




( Single bunch Longitudinal Instabilities (3)

% Case: og>ho
Lower energy = lose
more energy

4 Real Z

Higher energy = lose

less ener
gy\ This is unstable

ho g Frequency

# The cavity tends to increase the energy oscillations
# Now retune cavity so that ®R< he

R. Steerenberg, 05-Feb-2010 AXEL - 2010 10



( Single bunch Longitudinal Instabilities (3)

% Case: og< ho

Lower energy = lose

s Real Z less energy

Higher energy — lose A

more energy This is stable
OR he Fr:equency

o
o
"

¥ This is is known as the 'Robinson Instabl,ll‘fy

¥ To damp this instability one should r tune the
cavity so that og< ho

R. Steerenberg, 05-Feb-2010 AXEL - 2010 11




( Robinson Instability (1)

AE ¥ The Robinson Instability is a
[ - single bunch, dipole mode
B oscillation

phase
Longitudinal

phase space

Charge
“densi-c"ry Y
Seenona

/ scope

> time
R. Steerenberg, 05-Feb-2010 AXEL - 2010
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( Robinson Instability (2)

AE
= Longitudinal
e ‘ phase space
\ phase
Seenona
'scope
,Charge
density Y

> time
R. Steerenberg, 05-Feb-2010 AXEL - 2010 13



( Robinson Instability (3)

AE

Longitudinal
= phase space

haée
/A P
- Seenona

'scope

Charge
density Y

> time
R. Steerenberg, 05-Feb-2010 AXEL - 2010 14




( Robinson Instability (4)

AE
e e Longitudinal
e | phase space
phase
Seenona
'scope
,Charge
density 7’

> time
R. Steerenberg, 05-Feb-2010 AXEL - 2010 15



( Robinson Instability (5)

AE

- = Longitudinal
‘ phase space
phase
Seenona
'scope
,Charge /
density "4
/
/
Frequency = synchr'o:r}d‘;\ frequency
Mode m=1
> time

R. Steerenberg, 05-Feb-2010 AXEL - 2010 16



|

i Longitudinal

| AE
. ,
,Charge
density

phase space

Seenona
'scope
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|

a AE

,Charge
density

Longitudinal
phase space

Seenona
'scope
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|

i Longitudinal

| AE
N ,
,Charge
density

phase space

Seenona
'scope
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|

a AE

,Charge
density

Longitudinal
phase space

Seenona
'scope
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( Higher order modes m=2 ..... (5)

a AE

Longitudinal
- — phase space

Seenona
'scope

,Charge
density

Frequency = 2 x synchrotron
freguency
Mode m=2

:1-'
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( Multi-bunch instabilities (1)

# What if we have more than one bunch in our ring.....?
% Lets take 4 equidistant bunches A, B, C & D

% The field left in the cavity by bunch A alters the
coherent synchrotron oscillation motion of B, which
changes field left by bunch B, which alters bunch
C....to bunch D, etc..etc.. 7

aF
F
.r‘"-

% Until we get back to bunch A... 7

7
% For 4 bunches there are 4 possnble mo /gof coupled
bunch longitudinal oscillation

22
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( Multi-bunch instabilities (3)

A
AE A B C D l
o o o o o
s n=0 0
o
O o n=1 /2
®
o oo
o o—
®
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( Multi-bunch instabilities (4)

Ad
AE A B C D l
phase - = — o = ]
O
. — n=1 /2
O
o o—o
O o
O
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( Multi-bunch instabilities (5)

Ad
AE A B C D l
phase n=0 0
o o o o
o
o = n=1 /2
o
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( Multi-bunch instabilities (6)

Ad
AE A B C D l
phase ° o o - n=0 0
o
o = n=1 /2
o o—0
o
o
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( Multi-bunch instabilities (7)

Ad

AE A B C D l

phase ° o o - n=0 0

o
o = n=1 /2
o
o o—0
o o—
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( Multi-bunch instabilities (10)

Ad
AE A B C D l
phase ° o o - . 0
o
o = n=1 /2
o o—0
o
o
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( Multi-bunch instabilities (11)

¥ For simplicity assume we have a single cavity which
resonates at the revolution frequency

¥ With no coherent synchrotron oscillation we have:
A B C D
AE‘

phase

% Lets have a look at the voltage induced in a :c‘_av'i"ry
by each bunch .

'.{..
el
=

R. Steerenberg, 05-Feb-2010 AXEL - 2010 32




( Multi-bunch instabilities (12)

Bunch A
A B C D
AE‘
- o o ®
phase
v |

induced /\
phase\/
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( Multi-bunch instabilities (13)

Bunch B

A B C D

|

2 O
phase J

vV

ir‘ld”"e/\

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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( Multi-bunch instabilities (14)

Bunch C

|

phas;a

< @

v

. <7
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( Multi-bunch instabilities (15)

Bunch D
A B C D
AE‘
: O ® @
phase J .
" /

phase
36
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( Multi-bunch instabilities (16)

A & C induced voltages cancel

AE‘ A B C D
Phas; I T 1 / ,

v
ir‘lduced O%\
phase
37
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( Multi-bunch instabilities (17)

B & D induced voltages cancel

R. Steerenberg, 05-Feb-2010 AXEL - 2010



( Multi-bunch instabilities (18)

All voltages cancel = no residual effect

& A B C D
A ‘
- ® ® ®
phase J
vV
ir||duced
phase

39
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Multi-bunch instabilities (19)

e A Bl
e
>+
phase [- ....... S
VvV

induce

phase

Lets Introduce an n=1 mode coupled bunch oscillation

B & D induced vo cel
R. Steerenberg, 05-Feb-2010 AXEL - 2010 40




( Multi-bunch instabilities (20)

B ——
_— —
phase J ....... QP
v l

phase
A & C induced voltages do not cancel
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( Multi-bunch instabilities (21)

e —
T —
phase J ....... QP

l

mduced

phase

\J /W

This residual voltage
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( Multi-bunch instabilities (22)

[ L
phase J ....... QP
, l
deuced
4
phase ‘,f

This residual voltage will accelerate B
and decelerate D
This increase the oscillation amplitude
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( Multi-bunch instabilities (23)

AE‘ A B C D

phase

o °
° . . .
OOOOOOOO

Phase %

1/4 of a synchrotron
period later

N

A & C induced voltages now cancel
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( Multi-bunch instabilities (24)

\E A B G i
A
phas; B I I .......
v
deuced /\(
[ f
phase

B & D induced voltages do not cancel
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( Multi-bunch instabilities (25)

e -
= I‘ .......

v

mducec/\><\

phase \L/ /

This residual voltage
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( Multi-bunch instabilities (26)

" A B C D
e
T I I .......
v v

induced

‘ J""‘I‘..
2z

|
phase / /

This residual voltage will accelerate A
and decelerate C
Again = increase the oscillation amplitude
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Multi-bunch instabilities (27)

¥ Hence the n=1 mode coupled bunch oscillation is
unstable

¥ Not all modes are unstable look at n=3

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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( Multi-bunch instabilities (28)

....... i O,
4
phase J ....... --
'}
induce
phase

Introduce an n=3 mode
coupled bunch oscillation

B & D induced voltages cancel
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Multi-bunch instabilities (29)

| o —
- — 9 — =
phase l ....... P Yo
: | |
induced /\ |
o 7/
phase

A & C induced voltages do not cancel
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( Multi-bunch instabilities (30)

AE A B C D
B —
phase J ....... X

|

NG T

h : :
s This residual voltage
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( Multi-bunch instabilities (31)

A B C D
B =
phase J ....... P
» l
induced

‘ r 7/

I
phase /

This residual voltage will accelerate B
and decelerate D
— decrease the oscillation amplitude
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( Multi-bunch instabilities on a 'scope (1)

Tt wWqu

iurn 1

"Mountain range display”

R. Steerenberg, 05-Feb-2010 AXEL - 2010

53



,( Multi-bunch instabilities on a 'scope (2)
-

bAn A
.2
L
-
:

)

Add snapshot images some turns later
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%‘\ul‘ri-bunch instabilities on a 'scope (3)
—
P
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-
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"\ul‘ri-bunch instabilities on a 'scope (4)

§A%&%

®
e
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R_‘\ul‘ri-bunch instabilities on a 'scope (5)

AN
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‘\ul’ri—bunch instabilities on a 'scope (6)

AR
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u\ulﬂ-bunch instabilities on a 'scope (7)
-
s
¥
i
=
P
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L‘\ul‘ri—bunch instabilities on a 'scope (8)

o
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L‘\ul’ri—bunch instabilities on a 'scope (9)

| KAGA

l | l
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‘\ul’ri—bunch instabilities on a 'scope (10)
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‘\ul‘ri—bunch instabilities on a 'scope (11)

L
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‘\ul‘ri—bunch instabilities on a 'scope (12)

L
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ulti-bunch instabilities on a 'scope (13)
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L‘\ul’ri—bunch instabilities on a 'scope (16)

¥ What mode is this ?
% What is the synchrotron period?

/

/

A

)

R. Steerenberg, 05-Feb-2010 AXEL - 20
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u\ul‘ri—bunch instabilities on a 'scope (17)

% This is Mode n=2 One Synchrotron period

Y

¢ — == n=
i ' Ap=T
AXEL - 2 69




( Possible cures for single bunch modes

% Tune the RF cavities correctly in order to avoid
the Robinson Instability

% Have a phase lock system, this is a feedback on
phase difference between RF and bunch

% Have correct Longitudinal matching

% Radiation damping (Leptons)

% Damp higher order resonant modes in cavities
% Reduce machine impedance as much as possible

70
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( Possible cures for multi-bunch modes

% Reduce machine impedance as far as possible

% Feedback systems - correct bunch phase errors
with high frequency RF system

% Radiation damping (Leptons)
% Damp higher order resonant modes in cavities

71
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( Bunch lengthening (1)

¥ Now we controlled all longitudinal instabilities, but .....

# It seems that we are unable to increase peak bunch
current above a certain level

% The bunch gets longer as we add more particles.

% Why..?
% What happens....?

% Lets look at the behaviour of a cavity resona’ror' as we
change the driving frequency. 3
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( Bunch lengthening (2)

The phase of the response of a resonator depends on the
difference between the driving and the resonant frequencies

\hm ‘\\

Og
¢uResponse lags behind excitation

4+ Real Z
ho<wgi | .
§ . Cavity
Inductive | . impedance
impedance g i / p
Capacitive i
impedance i

ho=wg

IResponse leads excitation Frequency

R. Steerenberg, 05-Feb-2010 AXEL - 2010 73




|

Bunch lengthening (3)

Cavity driven on resonance
ho = oy = resistive impedance

Induced voltage

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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Bunch lengthening (4)
Cavity driven above resonance
ho > ®y = capacitive impedance

\Y%
bunch

Induced voltage

Response leads excitation

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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Bunch lengthening (5)

Cavity driven below resonance
ho < oz = inductive impedance

\Y%
bunch

Induced voltage

Response lags behind excitation

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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( Bunch lengthening (6)

% In general the Broad Band impedance of the
machine, vacuum pipe etc (other than the cavities)
IS inductive

% The bellows etc. represent very high frequency
resonators, which resonate at frequencies above
the bunch spectrum g
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( Bunch lengthening (7)

% Since the Broad Band impedance of the machine is
Eredominan‘rly inductive , the response lags
ehind excitation

bunch

/\/ :
\_4 :

Add this to the RF voltage
(above transition)

R. Steerenberg, 05-Feb-2010 AXEL - 2010 ‘ 78
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( Bunch lengthening (8)

RF voltage

Tends to reduce
apparent RF
voltage

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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Bunch lengthening (10)

Final RF voltage modifies

the bunch shape

Reduces RF voltage seen

by the bunch

/ Lengthened bunch

o

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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x Questions....Remarks...?

Multi bunch
instabilities
Cures for

Single bunch
instabilities

(A R 404 24 <2 Va4 4 442 4

Bunch
lengthening
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v How do they arise

v Single-bunch effects ("head-tail” instability)
v Multi-bunch modes (very brief)

v Possible cures

v Space charge effects
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( Coherent Transverse Oscillation (1)

% The complete bunch is displaced form side to side
(or up and down)

% A bunch of charged particles induces a charge in the
vacuum chamber

% This creates an image current in the vacuum
chamber walls

% How can these currents affect transverse motion?

R. Steerenberg, 05-Feb-2010 AXEL - 2010



( Coherent Transverse Oscillation (2)

Bunch current

Induced magnetic field

/®.

.

.

\

Vacuum chamber

Bunch

: Differential current

# If the bunch is displaced form the centre of ’r«he
vacuum chamber it will drive a differen’riaLW'all

current

% This leads to a magnetic field, which d

bunch

R. Steerenberg, 05-Feb-2010

AXEL - 2010

lects the



( Transverse coupling impedance (1)

¥ We characterize the electromagnetic response to the
bunch by a “transverse coupling impedance” (as for

longitudinal case)/
j(Zi/;a)) < 1()) dew = [(E+vx B)ds

/ =
Frequency spectrum Transverse E & B fields
of bunch current summed around the machine

% Z (exactly as Z,)is also a function of frequency

% Z also has resistive, capacitive and inductive
components '

% However, there is one big difference

eenZ & Z,

R. Steerenberg, 05-Feb-2010 AXEL - 2010 4



( Transverse coupling impedance (2)

¥ For a vacuum chamber with a short non-conduction
section the direct image current sees a high impedance
(large Z,)

() [

% For The differential current (current loops) is not
greatly affected so Z, is unchanged by the non-
conducting section .

¥ Thus:

= Any interruption to a smooth vacuum chamb:
+ Any structure that will support current |

increases Z,;
creases Z,

R. Steerenberg, 05-Feb-2010 AXEL - 2010



( Relationship with the longitudinal plane

¥ Longitudinal instabilities are related to synchrotron
oscillations

¥ Transverse instabilities are related to synchrotron
and betatron oscillations

¥ Particles move around the machine and execute

synchrotron and betatron oscillations

. AQ /Ap ) /

¥ If the chromaticity (5:Q/pj IS non zero
"4

¥ Then the changing energy, due to syncht;m{on
oscillations will also change the betatron,oscillation

frequency (Q)
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( Single bunch modes

¥ As for longitudinal oscillation there are different
modes for single bunch transverse oscillations

¥ We can observe the transverse bunch motion from
the difference signal on a position monitor

R. Steerenberg, 05-Feb-2010 AXEL - 2010




( Rigid bunch mode (1)

% The bunch oscillates transversely as a rigid unit

¥ On a single position sensitive pick-up we can
observe the following:

MmANCLTLIAMSO A Alﬂh'ﬂﬁﬂmn“+

—> —

revolution period

Change in position/turn = betatron phase advance/turn

R. Steerenberg, 05-Feb-2010 AXEL - 2010 ’ 8



( Rigid bunch mode (2)

Transverse
displacement

Lets superimpose successive turns

R. Steerenberg, 05-Feb-2010 AXEL - 2010



,( Rigid bunch mode (3)

: : Transverse
displacement

R. Steerenberg, 05-Feb-2010 AXEL - 2010 10



,( Rigid bunch mode (4)

: : Transverse
displacement
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,( Rigid bunch mode (5)

: : Transverse
displacement

(
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,( Rigid bunch mode (6)

} - Transverse

; displacement
-

e
v
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 Rigid bunch mode (7)

-
Py
i
-
-
o

Transverse
displacement
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 Rigid bunch mode (8)

o
-
i3
L
e
L

Transverse
displacement
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4 Rigid bunch mode (9)

e
-
i3
L
e
L

Transverse
displacement
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,( Rigid bunch mode (10)

*' ‘ Transverse
displacement

-~
o
-
-~
_.

.
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,( Rigid bunch mode (11)

i ‘ Transverse
displacement

-
By
-

-~
.

.
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,( Rigid bunch mode (12)

|
i
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,( Rigid bunch mode (13)
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 Rigid bunch mode (14)
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,( Rigid bunch mode (15)
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,( Rigid bunch mode (16)
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,( Rigid bunch mode (17)
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,( Rigid bunch mode (18)
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displacement
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( Rigid bunch mode (19)

~ Transverse
displacement
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Cure for rigid bunch mode instability

¥ To help avoid this instability we need a non-zero

chromaticity [52 A0 Apj /
0
l

J J

% The Particles will have a spread in betatron
frequencies l

¥ A spread in betatron frequencies will mean that any
coherent transverse oscillation (all particles moving
together) will very quickly become inec nt again.
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( Higher order bunch modes

¥ Higher order modes are called "Head-tail” modes as
the electro-magnetic fields induced by the head of
the bunch excite oscillation of the tail

¥ However, these modes may be harder to observe as
the centre of gravity on the bunch may not move.....

¥ Nevertheless, they are very important and ccmno’r be
neglected -

28
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( Head-tail modes (1)

# Head & Tail of bunch move 7 out of phase with each
other

% Again, lets superimpose successive turns

29
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,( Head-tail modes (2)

.
-
3
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.( Head-tail modes (3)
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-
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.( Head-tail modes (4)
i
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3
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.( Head-tail modes (5)
i
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.( Head-tail modes (6)
i
-
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L
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,( Head-tail modes (7)

% This is a standing wave with one node
- ¥ Thus: Mode M-=1

N
L
e
v

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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i( Head-tail modes (8)

— % This is (obviously!) Mode:

-

I3

? 3 % Let's look more in detail at the M=1 “head-tail”
mode

e ¥ But first some real life examples.......

0 .
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,( Head-tail modes (8)

¥ Some real life examples:

- T T ———
.:.;::_: . Al 'l'EYT’.. SRREr T EEE
RN | AONRORY ‘»‘in‘. ..-.’7'”"..
'.W".ﬂ‘h‘ilﬁ ‘- .'. A ﬂj..mnﬂm
-..'“ R | [T i T --“ﬁ‘-...
..=....

s 1” r; ;I',;'l 't
AN 7
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( Oscillation and the driving force (1)

% Before continuing, first a memory refresher....

¥ In order to increase the amplitude of a driven
oscillator the driving force must be ahead/(in phase)
of the motion

¥ Anyone who has pushed a child on a swi
this.....

R. Steerenberg, 05-Feb-2010 AXEL - 2010

will know
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( Oscillation and the driving force (2)
oscillation

driving force
/ /\ \ /\/ time

Driving force ahead of oscillation = increasing amplitude
Makes children happy but the beam unstable

INSTABILITY

=

39
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( Oscillation and the driving force (3)

driving force __— oscillation

/\ / time
~. 3
\/ >

Driving force behind the oscillation = decreasing amplitude
Makes children unhappy but the beam stable

DAMPING

=

40
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M=1 Head-tail mode (1)

% The M=1 head tail mode includes both betatron
and synchrotron oscillations

% There are many betatron oscillations during one
synchrotron oscillation

% Thus: Qs << Qh andalso Qs << Qv

% Lets set up an M=1 mode transverse bunch
oscillation

% This means that the particles in the tail of the

bunch are deflected by the electro-magnetic field
left behind by the head of the bunch
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( M=1 Head-tail mode (2)

AE/E 4

/_..f'

4

Two particles’in longitudinal phase space:
Transverse oscillation of the blue particle is exactly out of

phase with red one = red particle is exactly out'of phase

with the field left by the blue particle
NO EXCITATION A
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M=1 Head-tail mode (3)

| AE/E
-

However in 1/2 of a synchrotron period th
particles will change places

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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M=1 Head-tail mode (4)

¢+ AE/E
-
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M=1 Head-tail mode (5)

. AE/E
-
)

<

The energy of red particle is increasing
The energy of blue particle is decreasin

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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M=1 Head-tail mode (6)

+ AE/E
"
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M=1 Head-tail mode (7)

4+ AE/E
O N
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M=1 Head-tail mode (8)

s+ AE/E
N
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M=1 Head-tail mode (9)

s+ AE/E
N

R. Steerenberg, 05-Feb-2010 AXEL - 2010

49



( M=1 Head-tail mode (10)

s+ AE/E
-

J“‘f) -

Now they have changed places and ha\ﬁ//
returned to their original energies
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( M=1 Head-tail mode (11)

s+ AE/E
-

If the chromaticity is zero red will still be exactly out
of phase with the wake field left behind by blue
STABLE CONDITION
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( M=1 Head-tail mode (12)

s+ AE/E
oy

S

If Chromaticity is negative red would have made
slightly less betatron oscillations than blue

Then red's transverse oscillation would lag slightly
behind the wake field left by blue

INSTABLE

52
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( M=1 Head-tail mode (13)

s+ AE/E
oy

S

If Chromaticity is positive red would have made
slightly more betatron oscillations than blue
Then red's transverse oscillation would be sli
ahead of the wake field left by blue

STABLE

53
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( M=1 Head-tail mode (14)

¥ Conclusion:

r Above transition we must have a positive chromaticity
to avoid the M=1 mode Head-Tail instability.

+ Below transition we must have a negative chromaticity.

% The natural chromaticity of the machine without

sextupoles is normally negative (Ed > QF) ;
7
¥ We therefore we need sextupoles to be able to
correct the chromaticity. /*""
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( Transverse multi-bunch modes

% Longitudinal multi-bunch instabilities limit the
bunch intensity before the transverse modes
become a problem

% However, once a longitudinal feed back system has
been built, one may need to consider a transverse
feed back system too.....

55
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( Cures

% Correct the natural chromaticity of the machine
(set chromaticity negative below transition and
positive above transition, but not zero)

% Install a feed-back system.

- Detect a coherent oscillation and damp it using a
transverse kicker

% Damp transverse modes in cavities, where they
will remain longest, using a damping anTe__nn’éi
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( Space Charge effects (1)

¥ Between two charged particles in a beam we have
different forces: B=1

1 force \

o + —
I g
= total
I=ev 3 | force
e
/
o + _— 0 .
B

r;\agne'ric /

Coulomb  Magnetic
repulsion attraction

attractive
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( Space Charge effects (2)

% For many particles in a beam we can represent it
as following:

Charges = repulsion Parallel currenfs/;‘é’rr'acﬂon
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( Space Charge effects (2)

¥ At low energies, which means p<<1, the force is
mainly repulsive = defocusing

¥ It is zero at the centre of the beam and maximum at
the edge of the beam

y

Uniform density
__ distribution

X

Defocusing force

linear ( " 4

g

\\

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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Space Charge effects (3)

¥ For the uniform beam distribution, this linear
defocusing leads to a tune shift given by:

Classical electron radius

Number of particles in the beam

T

"LV
AQh,v i

2z

Transverse emittance

27[8}1 vﬁzyg

£
Relativistic parameters

% This tune shift is the same for all particles.and
vanishes at high momenta (p=1, y>>1)

% However in reality the beam dISTI"IbLITIOF\ is not

uniform....

R. Steerenberg, 05-Feb-2010 AXEL - 2010
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Space charge effects (4)

T

f

A y

Non-uniform density
distribution

Defocusing force
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Laslett tune shift (1)

% For the non-uniform beam distribution, this non-linear
defocusing means the AQ is a function of x
(transverse position)

% This leads to a spread of tune shift across the beam
% This tune shift is called the LASLETT tune shift’

roiN
AQh,v ~ _4 2 3
/ ﬂgh,vﬂ /4

half of the
uniform tune shift

% This tune spread cannot be corrected and does get
very large at high intensity and low m Tum
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( Laslett tune shift (2)

rolN .
— R Large neck tie
472-5]1,1”3 4 in tune diagram

N/
N/

A
Tune Shift |— Qh"’

% At injection into the PS Booster /

r E=0.988 GeV, y=1053, p= 0.313=AQ ~0.3
% For the same beam at injection into the PS
r E=2.3826 GeV, y = 2475, = 0915 = AQ ~ 0.005

¥ For the same beam at injection into the SPS
r E=14GeV, y=1493, B= 0.998 = AQ ~ 0.00001

% We accelerate the beam in the PSB as quickly as
Eossnble to avoid problems of blow-up due to
efatron resonances
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R Questions....,Remarks...?

' ; Single bunch
modes Head- tail modes

Space charge

Tune shift
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, Beam Break-up around transition....

<y > [au.]

100

TRACE 1

7S

S0

I
¥
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—50 |

/
\/

~75 |

—100 !
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Exercises: Lecture 1

/@ Find the products of the following matrices.
4 2)(3

o (150)
y

b) m OJ[X)
0 mAy

o) 1 IJ(I 2]
0 10 2
( 1 2

d) 1 l)[l IJ
0 100 1
(1 0Y1 |
~1

e) ¥ 1}(0 1]

@ The matrix relating “Q” of a machine to quadrupole currents is :-
Agx g 1.2 03) AIf B Alf
Agy) 02 21)aid)” " Ald

a.) What is the “reciprocal” or “inverse” of m (i.e. m™) ?

b.) What values of Alf,Ald are needed to change only AQx by 0.1 ?

@ You can measure Qx and Qy in your accelerator. Suggest the
measurements necessary to evaluate the matrix ‘m’ in question (2)

@ A mass ‘m’ is hanging on a spring, the weight is pulled down a distance
x and released, the restoring force of the spring per unit displacement is
‘k’, what is the frequency of oscillation? Does the frequency depend upon
the initial amplitude?

5) Draw a phase plot of the motion of the weight in, 4) by plotting
displacement .v. velocity.

As you increase the “phase angle” @, do you travel clockwise or
anti clockwise around the ellipse?
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Solutions 1

‘14 I L +hL
N d|
) \6) (0 1 )
11
b. (mx) e. |21 ,.]
\my T
1 4
C.
o 2)
2) ad-bc=246
. 21 -03
Inverse of matrix = m(-O.Z 1,2)

AIf) (085 -0.12YAQx
Ald ) {~0.08 049 )\ AQy
085 -012Y0.1
-0.08 0.49 Lo

Alf = 0.085
Ald =-0.008

3) Change If by Al and leave Id fixed, then measure the changes AQxAQy

now (AQXJ=(3 b Alf) But Ald=0

AQy) " \c dhaud
AQx AQy
o.o - —— and = ——
A=A ©=alf

similarly for Id leave If fixed.

AQx AQy
S b=—= and d=="L
Ald Ald

12



4

= =
=
At rest — (-
L TME (-
______ = TMB* x

Mg

Resulting force = Kx But F = Ma ...... Newton again.

There is a negative sign because the acceleration always opposes the
direction of motion

Therefore:
2
“:i‘:’j +Kx=0
g 2
@ .d__i‘.q.Ex —_ 0
dt m

exactly as for the pendulum.

X = X.cos{t + P)

dx .
— = —=X.0 sin{wt + P
™ sin( )
2
% = —X.0* cos(at + ®)

,‘,(;)zz-E Q):JK
m m

But whent=0, x =X, therefore x,=Xand ¢ =0

13



Solution is x = X cos JEt
m

Frequency does not depend on the amplitude x

5) x=Xcos‘/£t
m

V=—=-X.|—sIn,/—1
dt m m

A dx

o3 | &,
) dt

- S,

ol N
(t=0)®=0
/ O=2x \

Travel clockwise around plot.
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