Lepton Flavor Violation in high-scale SUSY with right-handed neutrinos

Minoru NAGAI (Univ. of Tokyo → KEK)

collaborated with T. Moroi and T. T. Yanagida

- Phys.Lett. B723 (2013) 107-112
- arXiv:1305.7357 (to be published in PLB)

8 Dec, 2013 「ニュートリノフロンティア」研究会 @クロス・ウェーブ府中

今日の話のまとめ

(重い) SUSY model + 重い右巻きニュートリノ |

大きな Lepton Flavor Violation!?

LFV in the SM with massive neutrinos

Neutrino oscillations ← Massive neutrinos

Lepton Flavor is not conserved

$$\operatorname{Br}(\mu \to e\gamma) \sim \left| \sum_{i} U_{\mu i} U_{ei} \frac{m_{\nu_{i}}^{2}}{M_{W}^{2}} \right|^{2}$$

$$\lesssim \mathcal{O}(10^{-50})$$

Any LFV observations in the near future experiments implies the existence of physics beyond the SM

massive neutrino + New Physics = Large LFV?

最小超対称標準模型

(Minimal Supersymmetric Standard Model)

超対称性 (SUSY) = ボゾンとフェルミオンの対称性

Squark
Slepton
Gluino
Bino
Wino
Higgsino

Higgs 2 重項 → h, H, A, H+ (2 HDM)

$$\langle H_d \rangle^2 + \langle H_u \rangle^2 = \frac{v^2}{2}$$

 $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$

どうして超対称性模型?

- 弦理論では超対称性は必須
- 大統一理論への示唆
- Hierarchy Problem (HP)
 (mew²とmsusy²の微調整)
- 暗黒物質(DM)の候補が存在 (neutralino, gravitino, ...)
- 軽いヒッグスを予言 (Higgs の4点結合がゲージ結合定数で与えられる)
- ミューオンの異常磁気能率を説明 できる数少ない模型

にられる)
$$m_h^2 = m_Z^2 \cos^2 2 eta + 輻射補正項 {
m tree} {
m loop}$$
 $a_\mu^{
m SUSY} \sim {m_\mu \over m_{
m SUSY}^2} an eta$ μ μ μ μ μ

LFV in SUSY models

[Hisano et al '95]

<u>Origin of flavor-violation</u>

Off-diagonal components of slepton mass matrices

$$\left(\Delta_{\rm MI} \equiv \frac{(m_{\tilde{l}}^2)_{ij}}{m_{\rm SUSY}^2}\right)$$

$$(m_{\tilde{l}}^2)_{ij} \simeq \begin{bmatrix} m_{\tilde{L}}^2 + m_e^{\dagger} m_e & a_e^{\dagger} v_d + m_e^{\dagger} \mu \tan \beta \\ a_e v_d + m_e \mu \tan \beta & m_{\tilde{E}}^2 + m_e m_e^{\dagger} \end{bmatrix}$$

$$\mathcal{L} = \frac{em_i}{2} \, \bar{l}_i F_{\mu\nu} \sigma^{\mu\nu} (A_L P_L + A_R P_R) l_j$$

where

$$A_L, A_R \sim \frac{\alpha_2}{4\pi} \frac{\Delta_{\text{MI}}}{m_{\text{SUSY}}^2} \tan \beta$$

$$A_L, A_R \sim \frac{\alpha_2}{4\pi} \frac{\Delta_{\text{MI}}}{m_{\text{SUSY}}^2} \tan \beta$$

$$\frac{Br(l_i \to l_j \gamma)}{Br(l_i \to l_j \nu_i \bar{\nu}_j)} = \frac{48\pi^2 e^2}{G_F^2} \left(|A_L|^2 + |A_R|^2 \right) \propto \frac{\Delta_{\text{MI}}^2}{m_{\text{SUSY}}^4} \tan^2 \beta$$

- mass scale of SUSY particles
- · Size of flavor-violation

LFV in SUSY models

<u>SUSY scale</u>

TeV-Scale

muon g-2 -- O(100)GeV sleptons & EW gauginos

Hierarchy Problem -- fine tuning btw m_W^2 & m_{SUSY}^2

Dark Matter -- thermal or non-thermal production?

GUT -- only light gauginos? log-dependence

Size of flavor violation •

Off-diagonal components of slepton mass matrices

- 1. Arbitrary values (Anarchy)

 too large LFV rates (SUSY flavor problem)
- 2. No flavour-mixing at tree-level

 | Importance of radiative corrections |

LFV in SUSY models with diagonal soft masses

- No LFV at tree-level $m_{\tilde{l}}^2 \simeq m_0^2 \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$
- Non-zero off-diagonal elements Radiative Corrections

Ex) See-saw model

$$y_{\nu} \sim 1 \text{ for } M_N \sim 10^{15} \, \mathrm{GeV}$$

$$y_{\nu} \sim 1 \ \text{for} \ M_N \sim 10^{15} \, \text{GeV}$$
 cf. SO(10) GUT: 16=6+3+3+2+1+1 $q_L \, d_R \, u_R \, l_L \, e_R (\nu_R)$

LFV in SUSY models with RNs

 $m_{\tilde{l}} \sim 200 \, \mathrm{GeV}, \quad M_{\tilde{W}} \sim 180 \, \mathrm{GeV}$

$$y_{\nu} = \frac{1}{v_u} \sqrt{\hat{M}_R} R \sqrt{\hat{m}_{\nu}} U_{MNS}^{\dagger}$$

Large Br for larger M_N

LHC7+8

Poor News : Non-observation of NP particles

universal scalar mass @ GUT scale

In a SUSY model

$$m_{\tilde{q}} \gtrsim 1.8 \, \mathrm{TeV}$$

$$M_{\tilde{g}} \gtrsim 1.4 \, \mathrm{TeV}$$

masses of colored particles are highly constrained

Note, LFV is probably induced by non-colored particles, which might escape from LHC search

LHC7+8

Great News: Discovery of Higgs boson

- Multi-channel
- Consistent with SM

Implication of Higgs mass on SUSY models

"Higgs mass = 126 GeV" - constraints on SUSY parameters

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \left[\log \left(\frac{M_S^2}{m_t^2} \right) + \frac{A_t^2}{M_S^2} \left(1 - \frac{A_t^2}{12M_S^2} \right) \right]$$
(126 GeV)² (91 GeV)²

LFV in High-scale SUSY models

126 GeV Higgs boson + Null result of SUSY search

O(10-100)TeV sfermions — muon g-2, HP, DM, GUT OK for 2) OK

- 1) gaugino mass ~ sfermion mass (gravity-med.)
- 2) gaugino mass << sfermion mass (anomaly-med.)

Size of flavor violation

Off-diagonal components of slepton mass matrices

1. Arbitrary values (Anarchy)

\

The simplest and the most natural case.

2. No flavour-mixing at tree-level (Universal)

The strongest constraint comes from Kaon-mixing

Kaon mixing parameter

$$\epsilon_K \propto \frac{\mathrm{Im}[\Delta_{d_R}^{12} \Delta_{d_L}^{12}]}{m_{\mathrm{SUSY}}^2}$$

Suppressed If the phases are cancelled

symmetry?

SO(10) relation and C-invariance

$$m_{\tilde{d}_L,ij}^2 = m_{\tilde{d}_R,ij}^{2*} \qquad \longleftarrow \qquad \text{C-inv.: } d_L \leftrightarrow d_R^c$$

 $ightharpoonup \epsilon_K^{\mathrm{SUSY}}$ is suppressed

Breaking of C-inv.: EW & Yukawa interactions

Breaking of SO(10) relation

Dominant SUSY contribution comes from

$$m_{\tilde{d}_L,33}^2 \neq m_{\tilde{d}_R,33}^{2*}$$
 (RG effect through top Yukawa)

$$\epsilon_K^{\rm SUSY} \sim \frac{{
m Im}[\Delta_{d_R}^{13} \Delta_{d_R}^{32} \Delta_{d_L}^{12}]}{m_{\rm SUSY}^2} \frac{m_{\tilde{b}_L}^2 - m_{\tilde{b}_R}^2}{m_{\rm SUSY}^2} \qquad \qquad 10 \qquad 0.7 \qquad 1 \\ 30 \qquad 0.7 \qquad 0.8$$

$$egin{array}{c|c|c|c|c} aneta & \Delta_{d_L,33} & \Delta_{d_R,33} \ \hline 10 & 0.7 & 1 \ 30 & 0.7 & 0.8 \ 50 & 0.5 & 0.5 \ \hline \end{array}$$

Kaon mixing parameter

 $|\Delta_{ij}| = 0.1$ maximal phase

LFV in High-scale SUSY models (Anarchy)

Anarchy ... large off-diagonal elements are given at tree-level

LFV in High-scale SUSY models (Anarchy)

In SUSY models, there is strong correlations btw Br($\mu \to e \gamma$), Br($\mu \to eee$) and R $_{\mu e}$ Future experimental limits can be converted to that of Br($\mu \to e\gamma$)

Electron EDM in High-scale SUSY models

New Limit: $d_e < 8.7 \times 10^{-29}$

ACME collaboration (2013)

LFV in high scale SUSY models (universal)

[Moroi, MN, Ynagida (2013)]

• Universal ... off-diagonal elements are generated by radiative corrections

In the see-saw model, with keeping the explanation of Higgs mass, is it possible to detect the LFV signals?

 $m_h \simeq 126 \, \mathrm{GeV}$

$$M_R \sim M_{\rm GUT} \ (y_{\nu} \sim 1)$$

measurable
LFV rates

LFV in high scale SUSY models (universal)

 Large neutrino Yukawa coupling is also useful to enlarge the parameter spaces with successful EWSB

LFV in high scale SUSY models (universal)

 Large neutrino Yukawa coupling is also useful to enlarge the parameter spaces with successful EWSB

$$m_h \simeq 126 \, {\rm GeV}$$

For smaller gaugino masses, large neutrino Yukawa is required

Summary

- ✓ 近年のLHC実験の結果(ヒッグスの質量、SUSY粒子の未発見)を踏まえると、O(10) TeV の重いSUSY模型が興味深い
- ✓ ニュートリノ振動はレプトンフレーバーの破れの証拠であり、重い SUSY模型でもニュートリノ湯川結合を通して観測可能な荷電レプト ンフレーバの破れが生じうる

- ✓ SO(10) relation があると Kaon mixing の制限を緩める
- ✓ EDMの実験が面白い
- ✓ 大きなニュートリノ湯川結合はEWSBを助けるのにも役立つ

Back up

Importance of double-mass insertion in high-scale SUSY models (Anarchy)

$$egin{pmatrix} lpha_2 \Delta_{e_L}^{12} \ & ext{vs} \ lpha_Y \Delta_{e_L}^{13} \Delta_{e_R}^{32} \, m_ au/m_\mu \end{bmatrix}$$

single mass insertion

$$Br \propto \frac{\Delta^2}{m_{
m SUSY}^4}$$

double mass insertion

$$Br \propto \frac{\Delta^4}{m_{\rm SUSY}^4}$$