

An Effective Theory of Neutrino

Systematic decomposition of the neutrinoless double beta decay operator

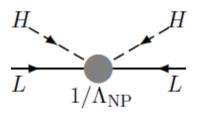
Toshihiko Ota

based on

Florian Bonnet, Martin Hirsch, TO, Walter Winter JHEP 1303 (2013) 055 arXiv. 1212. 3045

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\mathrm{SM}}$$

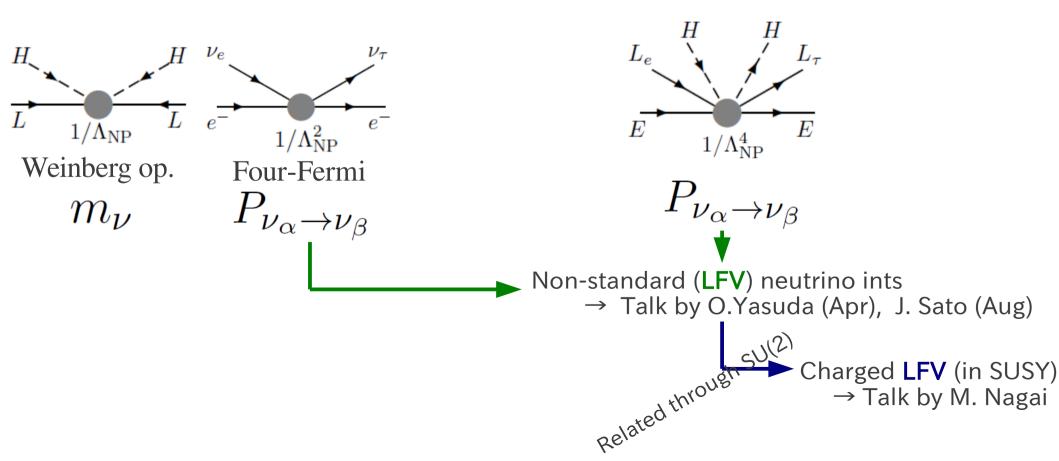
$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$


 $\Lambda_{\rm NP}$: A typical scale of New physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \boxed{\frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5}} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

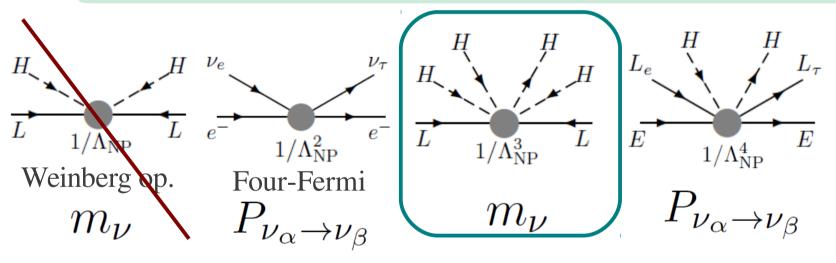
 $\Lambda_{\rm NP}$: A typical scale of New physics

Effective operators are a typical low-E remnant of New physics

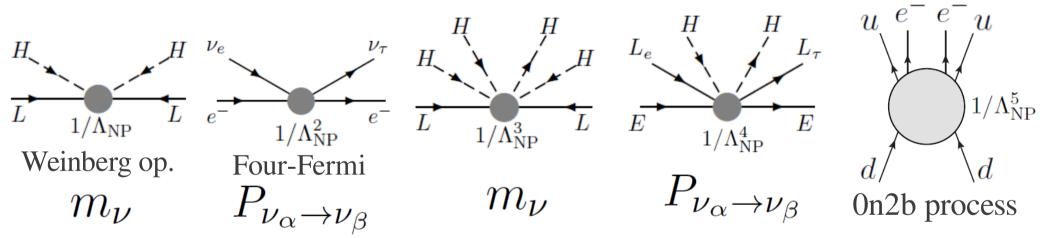

Weinberg op.

$$m_{\nu}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \boxed{\frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6}} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \boxed{\frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8}} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

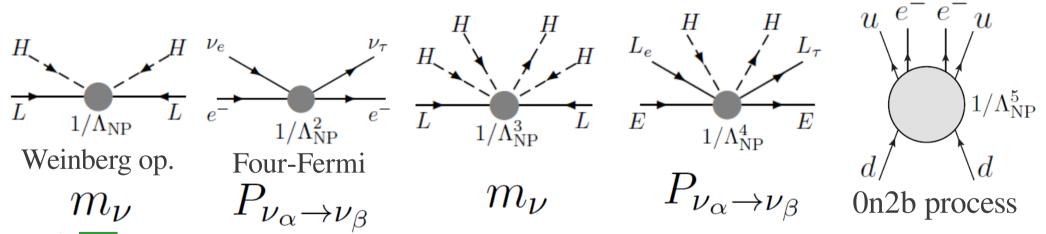

 $\Lambda_{\rm NP}$: A typical scale of New physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{Q}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$


 $\Lambda_{\rm NP}$: A typical scale of New physics

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \boxed{\frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9}} + \cdots$$

 $\Lambda_{\rm NP}$: A typical scale of New physics



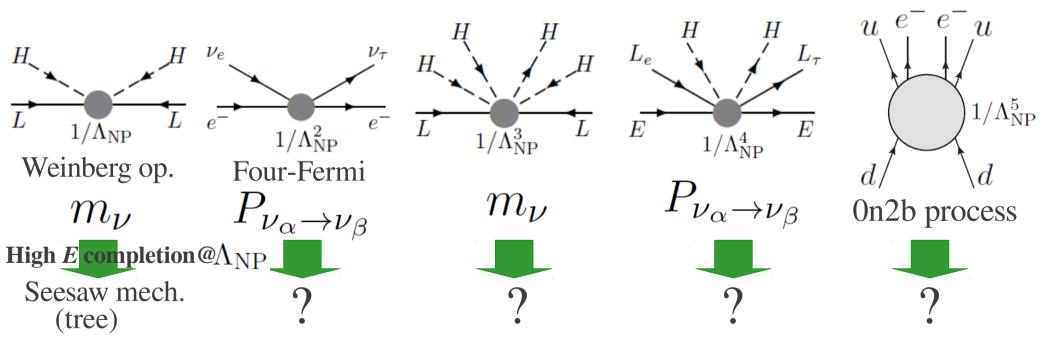
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \underbrace{\frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5}} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$: A typical scale of New physics

Effective operators are a typical low-E remnant of New physics

High E completion @ $\Lambda_{
m NP}$

Seesaw mech. (tree)


Seesaw shaved with Occam's razor → Talk by M. Ibe (Aug)

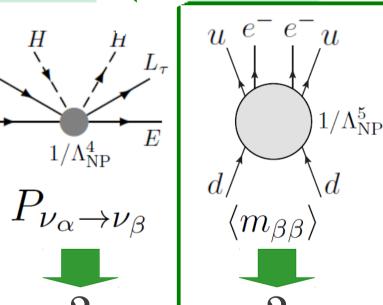
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$: A typical scale of New physics

Effective operators are a typical low-E remnant of New physics

What do these eff. ops. suggest to new physics at high E scales?

Exhaustive bottom-up approach



Seesaw mech.

(tree)

If the SM is a low-*E* effective model of a fundamental theory...

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}$$

What do these eff. ops. suggest to new physics at high E scales?

Exhaustive bottom-up approach

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

- Motivation: Why 0n2b? Why dim=9 ops?
 - $d=9 \text{ ops} \rightarrow \text{half-life time of 0n2b processes}$ "How sensitive 0n2b experiments to the d=9 ops?"
- What do the d=9 ops suggest to TeV scale physics?

d=9 ops \rightarrow decompose them to the fundamental ints.

→ list the TeV signatures of each completion

"The list helps us to discriminate the models"

Seeking a relation to the models at the TeV scale

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why On2b? Why dim=9 ops?

d=9 ops \rightarrow half-life time of 0n2b processes "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops \rightarrow decompose them to the fundamental ints.

Summary

→ list the TeV signatures of each completion

"The list helps us to discriminate the models"

Seeking a relation to the models at the TeV scale

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why On2b? Why dim=9 ops?

 $d=9 \text{ ops} \rightarrow \text{half-life time of 0n2b processes}$ "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops \rightarrow decompose them to the fundamental ints.

→ list the TeV signatures of each completion

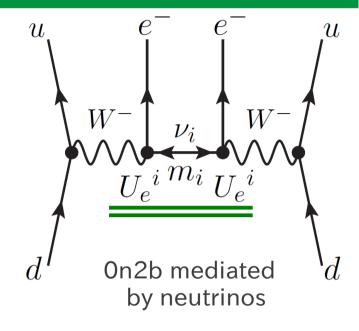
"The list helps us to discriminate the models"

3 Seeking a relation to the models at the TeV scale

Why 0n2b? Why d=9 op.?

Effective neutrino mass

● In SM+3nu, **0n2b exp** are sensitive to


Effective nu mass
$$\langle m_{\beta\beta}
angle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

$$U_e^{\ 1} = c_{12}c_{13}$$
 $U_e^{\ 2} = s_{12}c_{13}e^{i\alpha}$
 $U_e^{\ 3} = s_{13}e^{i\beta}$

Normal hierarchy
$$m_1 = m_0, m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}, m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$$

Inverted hierarchy

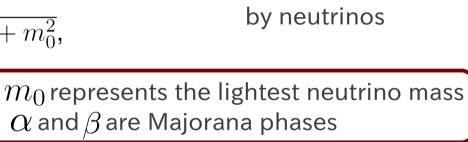
$$m_1 = \sqrt{|\Delta m_{31}^2| + m_0^2}, \ m_2 = \sqrt{\Delta m_{21}^2 + |\Delta m_{31}^2| + m_0^2},$$

 $m_3 = m_0$

 m_0 represents the lightest neutrino mass lpha and eta are Majorana phases

• In SM+3nu, **0n2b** exp are sensitive to

Effective nu mass
$$U_e^{\ 1}=c_{12}c_{13}$$
 $\langle m_{etaeta}
angle \equiv \sum_{i=1}(U_e^i)^2m_i$ $U_e^{\ 2}=s_{12}c_{13}e^{\mathrm{i}lpha}$ $U_e^{\ 3}=s_{12}e^{\mathrm{i}eta}$


$$U_e{}^1=c_{12}c_{13}$$
 $U_e{}^2=s_{12}c_{13}\mathrm{e}^{\mathrm{i}lpha}$ $U_e{}^3=s_{13}\mathrm{e}^{\mathrm{i}eta}$

$$m_1 = m_0, m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}, m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$$

Inverted hierarchy

$$m_1 = \sqrt{|\Delta m_{31}^2| + m_0^2}, \ m_2 = \sqrt{\Delta m_{21}^2 + |\Delta m_{31}^2| + m_0^2},$$

$$m_3 = m_0$$

0n2b mediated

Oscillation exp told us... e.g., Gonzalez-Garcia Maltoni Salvado Schwetz, JHEP 1212 (2012) 123

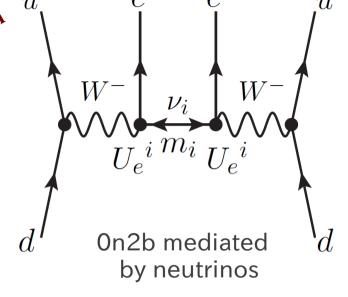
$$s_{12}^2 = 0.3,$$

$$s_{23}^2 = 0.41(0.59),$$

$$s_{13}^2 = 0.023$$

$$\Delta m_{21}^2 = 7.5 \cdot 10^{-5} \text{ eV}^2$$

$$s_{12}^2=0.3, \qquad s_{23}^2=0.41(0.59), \qquad s_{13}^2=0.023, \ \Delta m_{21}^2=7.5\cdot 10^{-5}~{\rm eV}^2, \quad |\Delta m_{31}^2|=2.5\cdot 10^{-3}~{\rm eV}^2$$


Why 0n2b? Why d=9 op.? Effective neutrino mass

• In SM+3nu, **0n2b** exp are sensitive to

Effective nu mass
$$U_e^{\ 1}=c_{12}c_{13}$$
 $V_e^{\ 2}=s_{12}c_{13}e^{\mathrm{i}\alpha}$ $U_e^{\ 3}=s_{13}e^{\mathrm{i}\beta}$

$$U_e{}^1=c_{12}c_{13}$$
 Unknow $U_e{}^2=s_{12}c_{13}\mathrm{e}^{\mathrm{i}lpha}$ $U_e{}^3=s_{13}\mathrm{e}^{\mathrm{i}eta}$

Normal hierarchy
$$m_1 = m_0$$
, $m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}$, $m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$

Inverted hierarchy

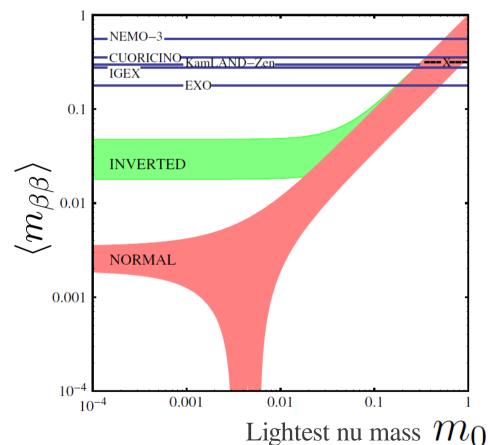
$$m_1 = \sqrt{|\Delta m_{31}^2| + m_0^2}, \ m_2 = \sqrt{\Delta m_{21}^2 + |\Delta m_{31}^2| + m_0^2},$$

$$m_3 = m_0$$

 m_0 represents the lightest neutrino mass lpha and eta are Majorana phases

Oscillation exp told us... e.g., Gonzalez-Garcia Maltoni Salvado Schwetz, JHEP 1212 (2012) 123

$$s_{12}^2=0.3, \qquad s_{23}^2=0.41(0.59), \qquad s_{13}^2=0.023, \ \Delta m_{21}^2=7.5\cdot 10^{-5}~{\rm eV}^2, \quad |\Delta m_{31}^2|=2.5\cdot 10^{-3}~{\rm eV}^2$$


Cosmological obs are sensitive to the other combination of params....

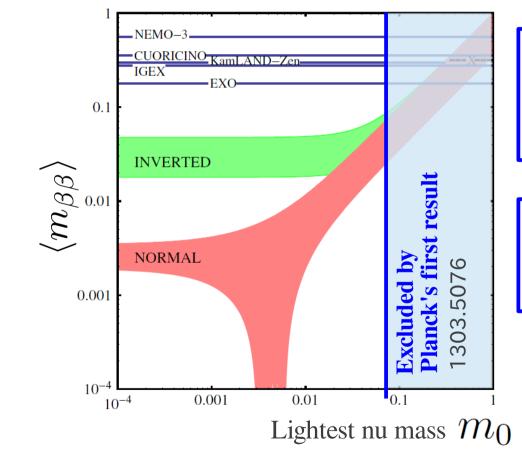
• **0n2b exp** are sensitive to

Effective nu mass
$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

$$\sum_{i=1}^{3} m_i (\simeq 3 \underline{m_0} \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$

Standard 3nu parameter space


Why 0n2b? Why d=9 op.? Effective neutrino mass

• **0n2b exp** are sensitive to Effective nu mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

$$\sum_{i=1}^{3} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$

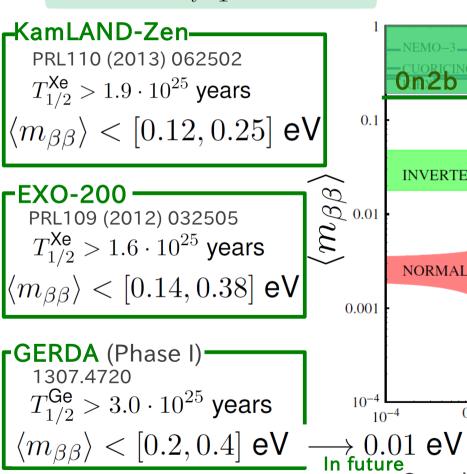
Planck (combined) 1303.5076 $\sum m_i < 0.23 \; {\sf eV}$

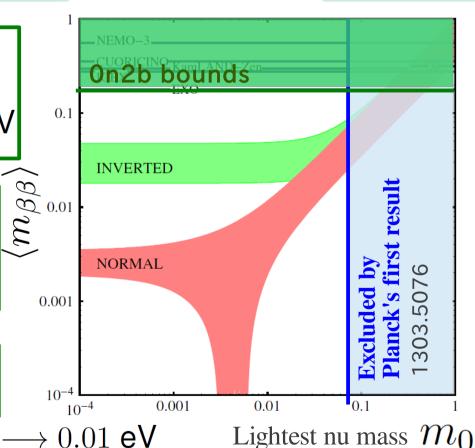
rWMAP9 (combined) 1212.5226 $m_i < 0.44 \; \mathrm{eV}$

> **SPT** reports non-zero mNu? 1212.6267

Standard 3nu parameter space

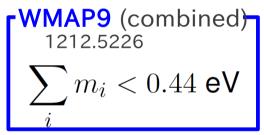
Why 0n2b? Why d=9 op.? Effective neutrino mass


• **0n2b exp** are sensitive to Effective nu mass


$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Talk by I. Shimizu (Apr)

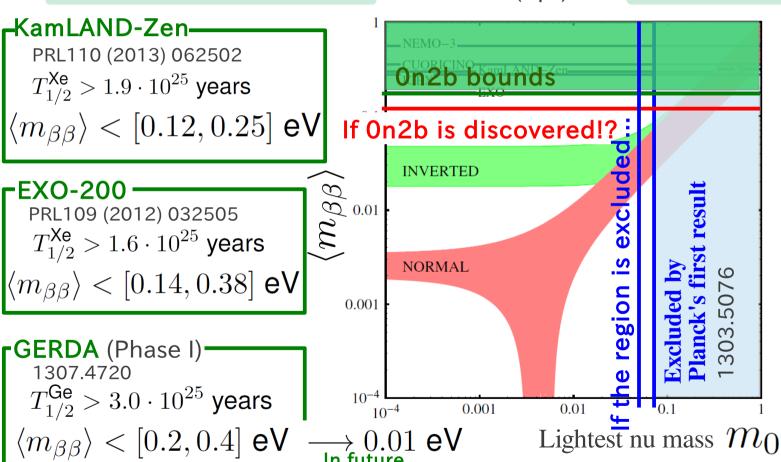
Cosmological obs constrain Sum of nu masses


$$\sum_{i=1}^{3} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$

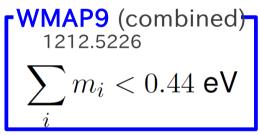
Standard 3nu parameter space

Planck (combined) 1303.5076 $\sum m_i < 0.23 \; {\sf eV}$

SPT reports non-zero mNu? 1212.6267


0n2b exp are sensitive to Effective nu mass

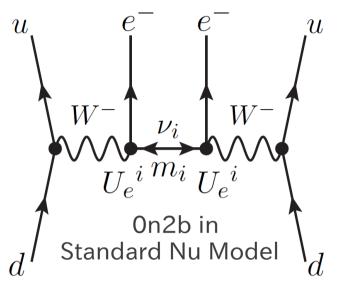
$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$


Talk by I. Shimizu (Apr)

Cosmological obs constrain Sum of nu masses

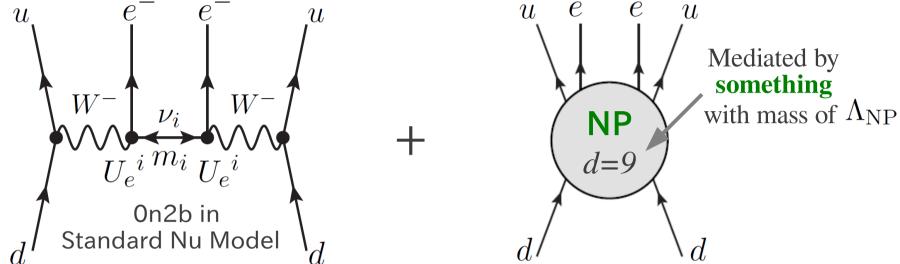
$$\sum_{i=1}^{3} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$

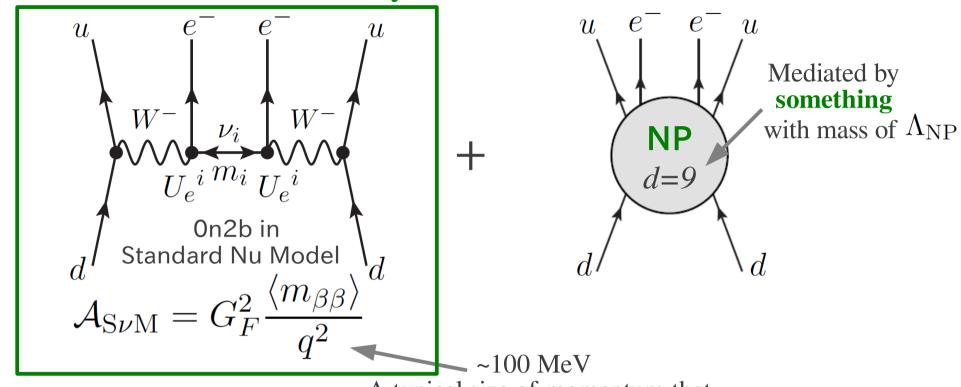
Planck (combined) 1303.5076 $\sum m_i < 0.23 \text{ eV}$

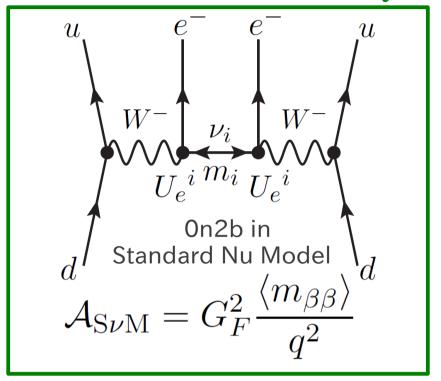


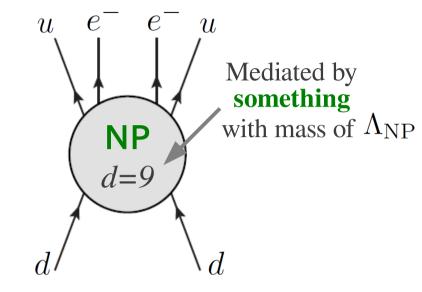
SPT reports non-zero mNu? 1212.6267

Q: If, in future, they will conflict with each other, what can we learn from them?

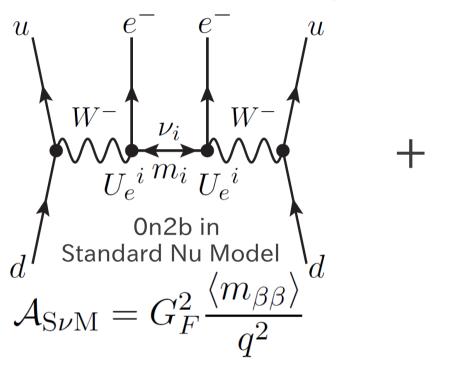


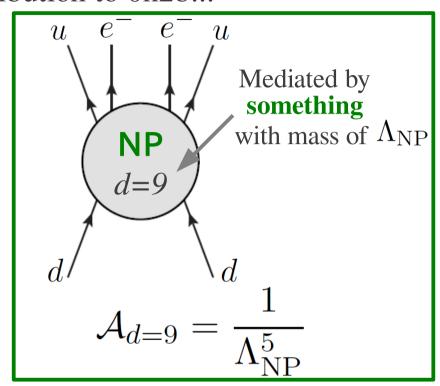




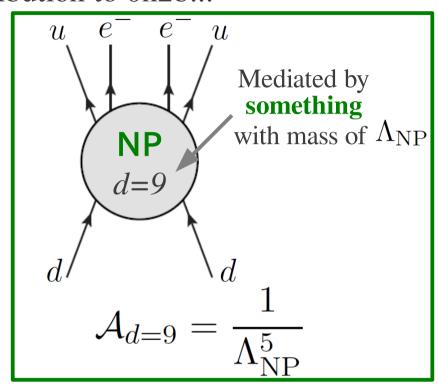

Current exp. limit

$$10^{25} \text{ [yr]} < T_{1/2}^{0\nu2\beta} \propto 1/\left|\mathcal{A}_{\rm S\nu M}\right|^2$$

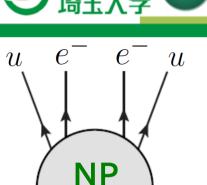



Current exp. limit Sensitive to $10^{25} \, [\mathrm{yr}] < T_{1/2}^{0\nu2\beta} \propto 1/\left|\mathcal{A}_{\mathrm{S}\nu\mathrm{M}}\right|^2 \, \rangle \, \langle m_{\beta\beta} \rangle < 0.3 \, [\mathrm{eV}]$

$$\langle m_{\beta\beta} \rangle < 0.3 \, [\text{eV}]$$



Current exp. limit
$$10^{25}$$
 [yr] $< T_{1/2}^{0\nu2\beta} \propto 1/\left|\mathcal{A}_{\mathrm{S}\nu\mathrm{M}}\right|^2 \longrightarrow \langle m_{\beta\beta}\rangle < 0.3$ [eV] $\propto 1/\left|\mathcal{A}_{d=9}\right|^2$



Current exp. limit Sensitive to
$$10^{25} \ [\text{yr}] < T_{1/2}^{0\nu2\beta} \propto 1/\left|\mathcal{A}_{\text{S}\nu\text{M}}\right|^2 \qquad \langle m_{\beta\beta}\rangle < 0.3 \ [\text{eV}]$$

$$\propto 1/\left|\mathcal{A}_{d=9}\right|^2 \qquad \Lambda_{\text{NP}} > \mathcal{O}(1) \ [\text{TeV}]$$

0n2b exps are sensitive to not only Majorana neutrino mass but also NP at TeV.

... Talls into the following 3 types of effective ops.
$$\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[\sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right],$$

$$(\mathcal{O}_1) \equiv J_X J_Y j_Z, \qquad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d$$

$$(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c$$

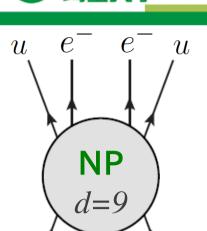
$$(\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,$$

$$\begin{array}{c|cccc}
u & e & e & u \\
\hline
NP & & & \\
d & & & \\
\end{array}$$

$$\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[\sum_{i=1}^{3} \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^{4} \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right],$$

$$(\mathcal{O}_1) \equiv J_X J_Y j_Z, \qquad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d$$

$$(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c$$


$$(\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,$$

Nice (&compact) formula to calculate the half-life time: Paes et al. PLB498 (2001) 35

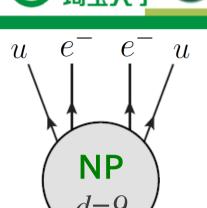
$$\left(T_{1/2}^{0\nu2\beta}\right)_{\underline{d=9}}^{-1} = G_1 \left| \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right|^2 + G_2 \left| \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right|^2 + G_3 \operatorname{Re} \left[\left(\sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right) \left(\sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right)^* \right]$$

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\mathrm{S}\nu\mathrm{M}}^{-1} = G_1 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \left[\mathcal{M}_{\mathrm{GT}} - \frac{g_V^2}{g_A^2} \mathcal{M}_{\mathrm{F}} \right] \right|^2$$

 \mathcal{M}_i Nuclear matrix elements G_i Phase space factors

$$\begin{cases}
\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[\sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right], \\
(\mathcal{O}_1) \equiv J_X J_Y j_Z, \quad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d \\
(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c \\
d \quad (\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,
\end{cases}$$

Nice (&compact) formula to calculate the half-life time: Paes et al. PLB498 (2001) 35


$$\left(T_{1/2}^{0\nu2\beta}\right)_{\underline{d=9}}^{-1} = G_1 \left| \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right|^2 + G_2 \left| \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right|^2 + G_3 \operatorname{Re} \left[\left(\sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right) \left(\sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right)^* \right]$$

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\text{S}\nu\text{M}}^{-1} = G_1 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \left[\mathcal{M}_{\text{GT}} - \frac{g_V^2}{g_A^2} \mathcal{M}_{\text{F}} \right] \right|^2$$

$$\mathcal{M}_i \text{ Nuclear matrix elements}$$

$$G_i \text{ Phase space factors}$$

Q: What is the high E (TeV) origin of these d=9 effective ops? d=9 ops.

$$\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[\sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right],$$

$$(\mathcal{O}_1) \equiv J_X J_Y j_Z, \quad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d$$

$$(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c$$

$$(\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,$$

Nice (&compact) formula to calculate the half-life time: Paes et al. PLB498 (2001) 35

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\underline{d=9}}^{-1} = G_1 \left| \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right|^2 + G_2 \left| \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right|^2 + G_3 \operatorname{Re} \left[\left(\sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right) \left(\sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right)^* \right]$$

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\text{S}\nu\text{M}}^{-1} = G_1 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \left[\mathcal{M}_{\text{GT}} - \frac{g_V^2}{g_A^2} \mathcal{M}_{\text{F}} \right] \right|^2$$

$$\mathcal{M}_i \text{ Nuclear matrix elements}$$

$$G_i \text{ Phase space factors}$$

Q: What is the high E (TeV) origin of these d=9 effective ops?

d=9 ops. bottom-up List high E (TeV) completions \rightarrow complementarity with LHC

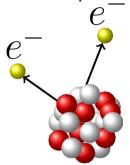
New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why On2b? Why dim=9 ops?

d=9 ops \rightarrow half-life time of 0n2b processes "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops \rightarrow decompose them to the fundamental ints.

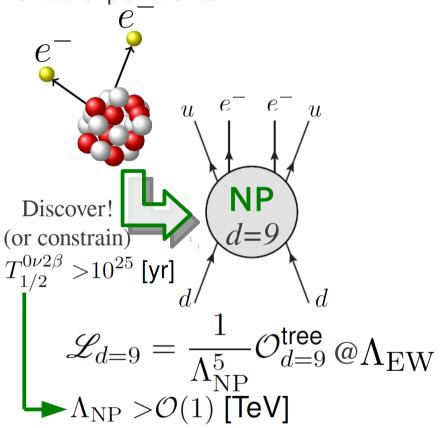

→ list the TeV signatures of each completion

"The list helps us to discriminate the models"

Seeking a relation to the models at the TeV scale

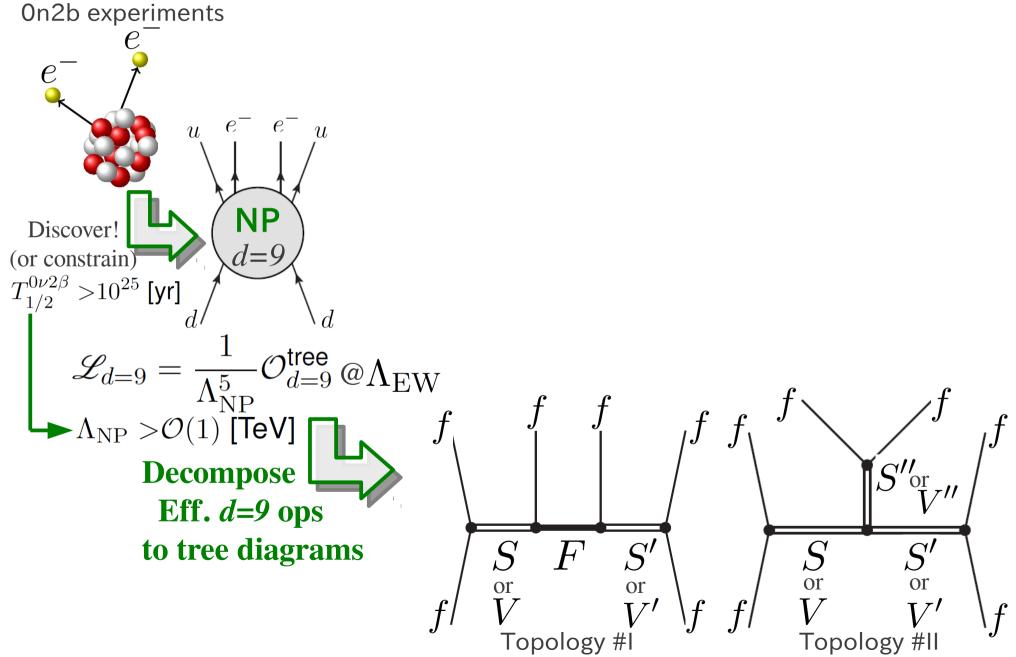
• Exhaustive bottom-up approach

0n2b experiments


Discover!

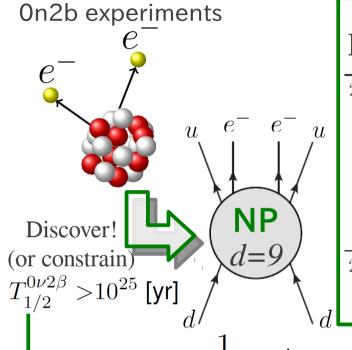
(or constrain)

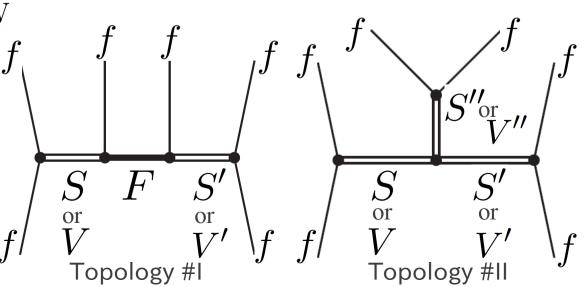
$$T_{1/2}^{0\nu2\beta}>\!\!10^{25}~{\rm [yr]}$$


• Exhaustive bottom-up approach

0n2b experiments

• Exhaustive bottom-up approach

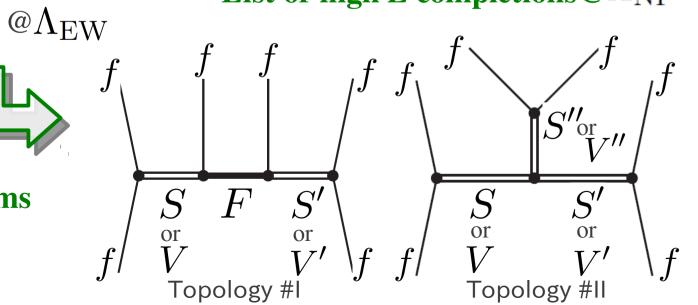




• Exhaustive bottom-up approach

Necessary Mediators					S
How to decompos	e BL op.	S	\dot{F}	S'	Basis operators
2-i-a $(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_L}e_L)$	#11	$(1,2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$
		$(1,2)_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},3)_{+1/3}$	
$(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Re_R})$	#19	$(1,2)_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_R(J_R)^\rho(j)_\rho$
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_L}e_L)$	#14	$(1,2)_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_LJ_Rj_R$
		$(1,2)_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},3)_{+1/3}$	
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_R}e_R)$	#20	$(1,2)_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_L(J_R)^{\rho}(j)_{\rho}$
2-i-b $(\overline{u_L}d_R)(\overline{e_L})(d_R)(\overline{u_L}e_L)$	#11	$(1,2)_{+1/2}$	$({f 1},{f 1})_0$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$
:		$({f 1},{f 2})_{+1/2}$	$({f 1},{f 3})_0$	$(\overline{3},3)_{+1/3}$	

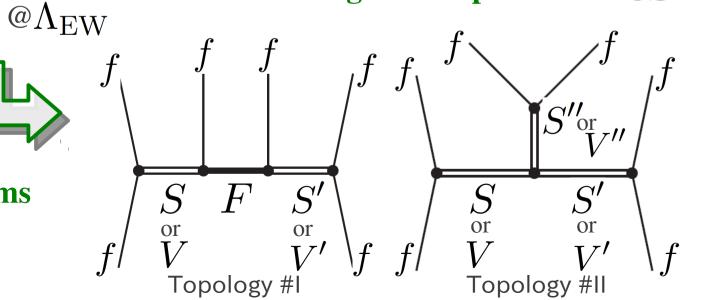
List of high E completions @ $\Lambda_{\rm NP}$



Exhaustive bottom-up approach

	S			
How to decompos	SE BL op.	S F	S'	Basis operators
2-i-a $(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Le_L})$	#11	$({f 1},{f 2})_{+1/2} \ ({f \overline 3},{f 2})_{+5/6}$	$({\bf \overline{3}},1)_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$
		$({f 1},{f 2})_{+1/2} \ ({f \overline 3},{f 2})_{+5/6}$	$(\overline{3},3)_{+1/3}$	
$(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Re_R})$	#19	$({f 1},{f 2})_{+1/2} \ ({f \overline 3},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_R(J_R)^{\rho}(j)_{\rho}$
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_Le_L})$	#14	$({f 1},{f 2})_{+1/2} \ ({f \overline 3},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_LJ_Rj_R$
		$({f 1},{f 2})_{+1/2} \ ({f \overline 3},{f 2})_{+5/6}$	$(\overline{3},3)_{+1/3}$	
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_R}e_R)$	#20	$({f 1},{f 2})_{+1/2} \ ({f \overline 3},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_L(J_R)^{\rho}(j)_{\rho}$
2-i-b $(\overline{u_L}d_R)(\overline{e_L})(d_R)(\overline{u_Le_L})$	#11	$({f 1},{f 2})_{+1/2}$ $({f 1},{f 1})_0$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$
:		$(1,2)_{+1/2}$ $(1,3)_0$	$(\overline{3},3)_{+1/3}$	

List of high E completions @ Λ_{NP}

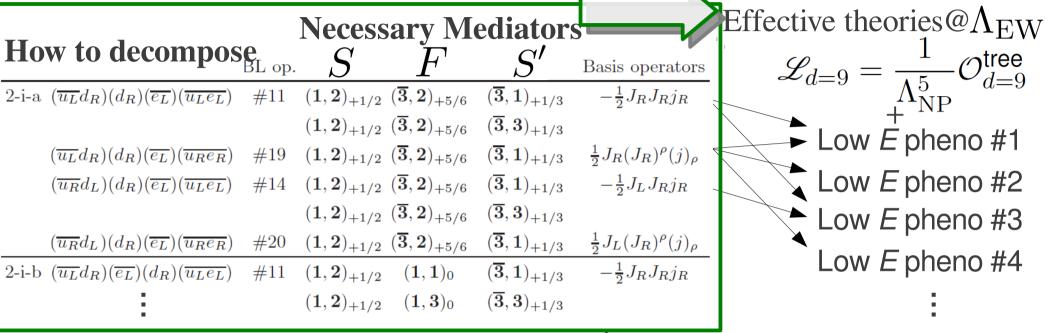


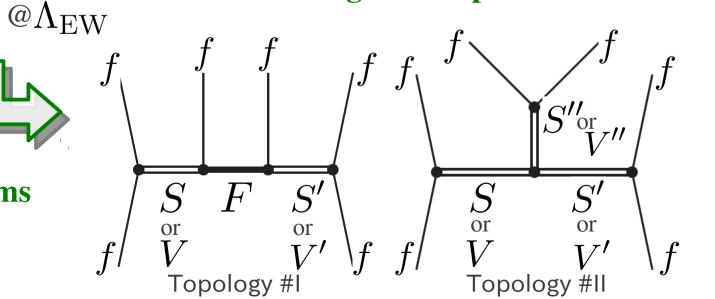
Exhaustive bottom-up approach

Re-integrate out the Mediators

		Necess	ary M	ediators		Effective theories@ $\Lambda_{ m EW}$
How to decompos	e BL op.	S	F	S'	Basis operators	
2-i-a $(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Le_L})$	#11	$(1,2)_{+1/2}$	$(\overline{\bf 3},{\bf 2})_{+5/6}$	$({f \overline{3}},{f 1})_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$	
		$(1,2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},3)_{+1/3}$		
$(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Re_R})$	#19	$(1,2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_R(J_R)^{\rho}(j)_{\rho}$	
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_Le_L})$	#14	$(1, 2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_LJ_Rj_R$	
		$(1,2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},3)_{+1/3}$		
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_R}e_R)$	#20	$(1,2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$({f \overline{3}},{f 1})_{+1/3}$	$\frac{1}{2}J_L(J_R)^{\rho}(j)_{\rho}$	
2-i-b $(\overline{u_L}d_R)(\overline{e_L})(d_R)(\overline{u_L}e_L)$	#11	$(1, 2)_{+1/2}$	$({f 1},{f 1})_0$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$	
:		$({f 1},{f 2})_{+1/2}$	$({f 1},{f 3})_0$	$(\overline{3},3)_{+1/3}$		

List of high E completions @ Λ_{NP}



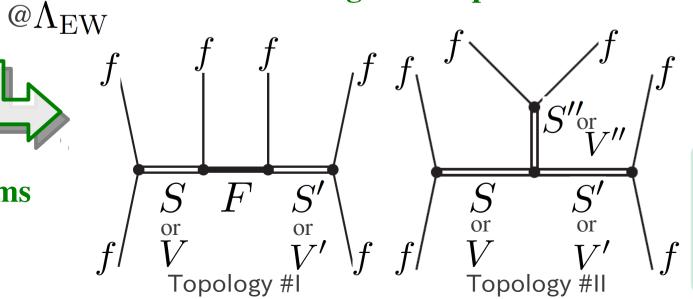


• Exhaustive bottom-up approach

Re-integrate out the Mediators

List of high E completions @ $\Lambda_{\rm NP}$

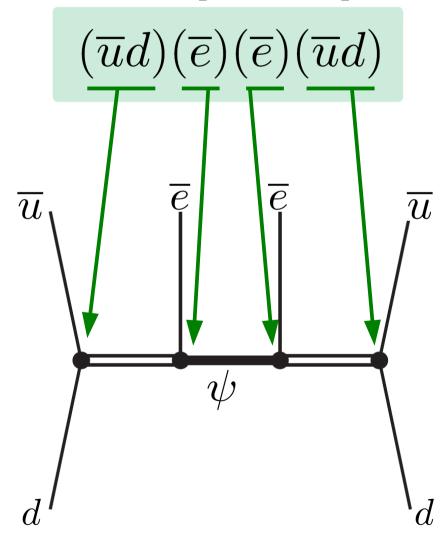
2 Effective ops \rightarrow High E completions


Exhaustive bottom-up approach

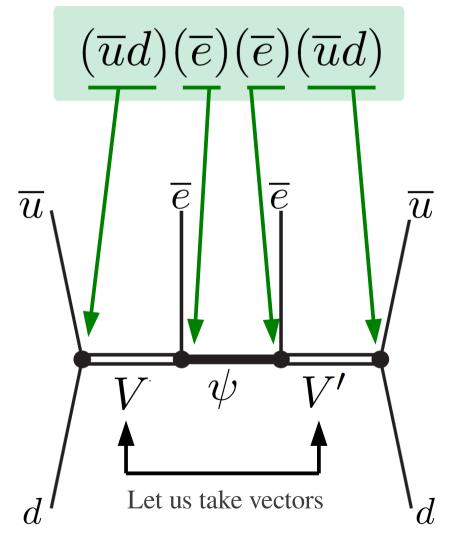
Re-integrate out the Mediators

TT 4 1		Necess	ary M	ediator	
How to decompos	e BL op.	S	\overline{F}	S'	Basis operators
2-i-a $(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Le_L})$	#11	$(1,2)_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$
		$({f 1},{f 2})_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},3)_{+1/3}$	
$(\overline{u_L}d_R)(d_R)(\overline{e_L})(\overline{u_Re_R})$	#19	$({f 1},{f 2})_{+1/2}$	$({f \overline{3}},{f 2})_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_R(J_R)^{\rho}(j)_{\rho}$
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_Le_L})$	#14	$({f 1},{f 2})_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},1)_{+1/3}$	$-\frac{1}{2}J_LJ_Rj_R$
		$({f 1},{f 2})_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},3)_{+1/3}$	
$(\overline{u_R}d_L)(d_R)(\overline{e_L})(\overline{u_R}e_R)$	#20	$(1,2)_{+1/2}$	$(\overline{3},2)_{+5/6}$	$(\overline{3},1)_{+1/3}$	$\frac{1}{2}J_L(J_R)^{\rho}(j)_{\rho}$
2-i-b $(\overline{u_L}d_R)(\overline{e_L})(d_R)(\overline{u_L}e_L)$	#11	$(1,2)_{+1/2}$	$({f 1},{f 1})_0$	$({f \overline{3}},{f 1})_{+1/3}$	$-\frac{1}{2}J_RJ_Rj_R$
:		$({f 1},{f 2})_{+1/2}$	$({f 1},{f 3})_0$	$(\overline{3},3)_{+1/3}$	

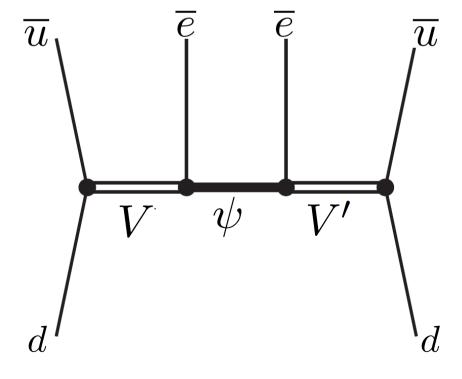
Effective theories@ $\Lambda_{\rm EW}$ $\mathcal{L}_{d=9} = \frac{1}{\Lambda_{\rm NP}^5} \mathcal{O}_{d=9}^{\rm tree}$ + Low E pheno #1 + Low E pheno #2 + Low E pheno #3 + Low E pheno #4



Testing phenos, we can identify the models $@\Lambda_{\mathrm{NP}}$


We can explore high E models relating to $\mathcal{O}_{d=9}$, systematically.

Taking Topology #I let us decompose d=9 op as



Taking Topology #I let us decompose d=9 op as

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$


Necessary mediators

$$V(+1,\mathbf{1}) \ V'(-1,\mathbf{1}) \ \psi(0,\mathbf{1})$$

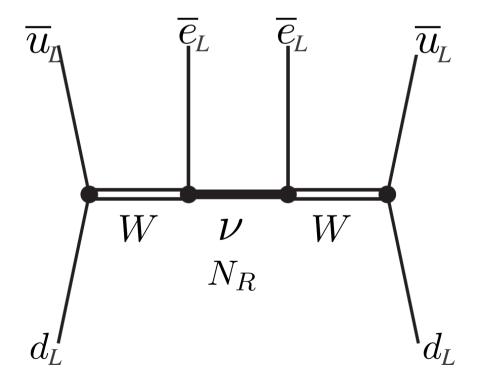
where $(U(1)_{em}, SU(3)_{c})$

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$

Necessary mediators

$$V(+1,{f 1}) \hspace{0.5cm} W^+ \ V'(-1,{f 1}) \hspace{0.5cm} W^- \ \psi(0,{f 1}) \hspace{0.5cm} {m
u}$$


where $(U(1)_{em}, SU(3)_{c})$

Rediscovery of the standard neutrino mass contribution

All the outer fermions must be left-handed

Taking Topology #I let us decompose d=9 op as

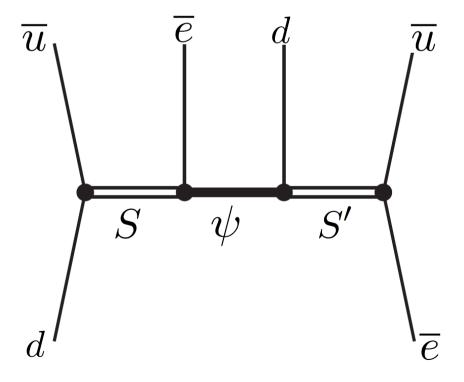
$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$

Necessary mediators

$$V(+1,{f 1}) \hspace{0.5cm} W^+ \ V'(-1,{f 1}) \hspace{0.5cm} W^- \ \psi(0,{f 1}) \hspace{0.5cm} {m
u} \hspace{0.5cm} N_R$$

where $(U(1)_{em}, SU(3)_{c})$

Rediscovery of the standard neutrino mass contribution


All the outer fermions must be left-handed

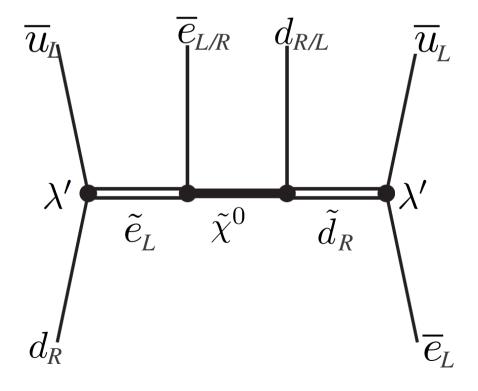
In Seesaw model, right-handed neutrinos (sterile neutrinos) can also mediate this diagram.

Another example,

Decomposition

$$(\overline{u}d)(\overline{e})(d)(\overline{u}\overline{e})$$

Necessary mediators


$$S(1, \mathbf{1})$$
 $S'(+1/3, \overline{\mathbf{3}})$
 $\psi(0, \mathbf{1})$

where $(U(1)_{em}, SU(3)_{c})$

Another example,

Decomposition

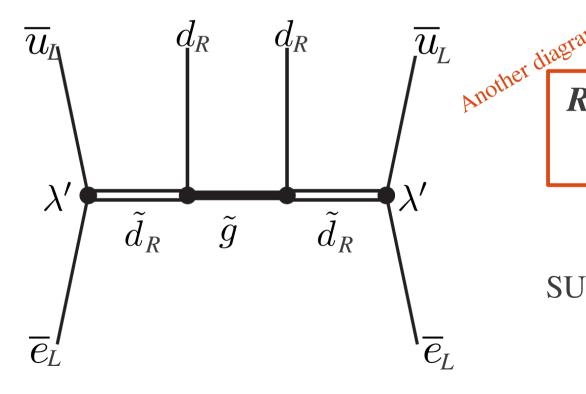
$$(\overline{u}d)(\overline{e})(d)(\overline{u}\overline{e})$$

Necessary mediators

$$S(1, \mathbf{1})$$
 \tilde{e}^* $S'(+1/3, \overline{\mathbf{3}})$ \tilde{d}^* $\psi(0, \mathbf{1})$ $\tilde{\chi}^0$

where $(U(1)_{em}, SU(3)_{c})$

R-parity violating SUSY models $\mathscr{W}_{\cancel{R}}\ni \lambda'\hat{L}\hat{Q}\hat{D}^c$


Hirsch Klapdor-Kleingrothaus Kovalenko, PLB378 (1996) 17, PRD54 (1996) 4207

SUSY (Rp-conserved) search at LHC 1st generation squarks and gluino should be heavier than 1TeV

Another example,

Decomposition

$$(\overline{ue})(d)(d)(\overline{ue})$$

Necessary mediators

$$S(-1/3, \mathbf{3})$$
 \tilde{d}
 $S'(+1/3, \overline{\mathbf{3}})$ \tilde{d}^*
 $\psi(0, \mathbf{8})$ \tilde{g}

where $(U(1)_{em}, SU(3)_{c})$

R-parity violating SUSY models $\mathscr{W}_{\cancel{R}}\ni \lambda'\hat{L}\hat{Q}\hat{D}^c$

Hirsch Klapdor-Kleingrothaus Kovalenko, PLB378 (1996) 17, PRD54 (1996) 4207

SUSY (Rp-conserved) search at LHC 1st generation squarks and gluino should be heavier than 1TeV

List of high *E* completions

		Long	Mediat	or $(U(1)_{em},$	SU(3),)		
#	Decomposition	Range?	S or V	1/2	S' or V'	Models/Refs./Comments	_
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1,1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60]	SnuM
				,		LR-symmetric models [39],	Januivi
						Mass mechanism with ν_S [6]	¹ Seesa
						TeV scale seesaw, e.g., [62,6	3 JCC3u
			(+1,8)	(0, 8)	(-1,8)	[04]	
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)		
			(+1, 8)	(+5/3, 3)	(+2, 1)		
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3, 3)	(+2, 1)		
			(+1, 8)	(+4/3, 3)	(+2, 1)		_
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)		
211	(- D (-) (D ()		(+1,8)	(+4/3, 3)	(+1/3, 3)	DDI (80 00) 10 (07 00)	_
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	(+1/3, 3)	RPV [58–60], LQ [65,66]	RPV
	/= N/=>/=\/		(+1,8)	(0, 8)	(+1/3, 3)		JKFV
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1,1)	(+5/3, 3)	(+2/3, 3)		
0 " 1	(-1)(-)(-)(1-)	(1.)	(+1,8)	(+5/3, 3)	(+2/3, 3)	DDW (FO AO) TO (AF AA)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV [58–60], LQ [65, 66]	
2-iii-a	(4=\/::\/4\/::=\	(n)	(+1,8)	(0, 8)	(+2/3, 3)	RPV [58-60]	
Z-111-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	$(-2/3, \overline{3})$ $(-2/3, \overline{3})$	(0, 1) (0, 8)	$(+1/3, \overline{3})$ $(+1/3, \overline{3})$	RPV [58-60] RPV [58-60]	
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3, 3) (-2/3, 3)	(0, 3) $(-1/3, 3)$	(+1/3, 3) (+1/3, 3)	KF V [58-60]	
2-111-1)	(ac)(a)(a)(ac)		(-2/3, 3) (-2/3, 3)	$(-1/3, \overline{6})$	(+1/3, 3)		
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 3)	$(+1/3, \overline{3})$	(-2/3, 3)	only with V_{ρ} and V'_{ρ}	
0-1	(44)(0)(0)(44)		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	only with v _p and v _p	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		$(+4/3, \frac{3}{3})$	(+5/3, 3)	(+2, 1)	only with V_{ρ}	
0.11	(44)(4)(4)(66)		(+4/3, 6)	(+5/3, 3)	(+2, 1)	ν, που νρ	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	(+4/3, 3)	(+2, 1)	only with V_{ρ}	
	(/(-/(-/		$(+2/3, \overline{6})$	(+4/3, 3)	(+2, 1)		
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+2/3, 3)	RPV [58-60]	
	(// // /		(-2/3, 3)	(0, 8)	(+2/3, 3)	RPV [58–60]	
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}	
			(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)	
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	(+2/3, 3)	only with V_{ρ}	
			(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	•	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	(+1/3, 3)	RPV [58–60]	
			(-1/3, 3)	(0, 8)	(+1/3, 3)	RPV [58–60]	JRPV
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	(+1/3, 3)	(-2/3, 3)	only with V'_{ρ}	
			(-1/3, 3)	(+1/3, 6)	(-2/3, 6)	-	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3)	(-4/3, 3)	(-2/3, 3)	only with V'_{ρ}	
			(-1/3, 3)	(-4/3, 3)	(-2/3, 6)		
							

Possible decompositions and eesaw Necessary mediators

(only Topology #I)

• 4 possibilities for each decom.

S-F-S, V-F-V, S-F-V, and V-F-S

- Mediators are specified with
 U(1) EM charge
 SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions $(SU(2)_L \text{ and } U(1)_Y)$
 - → Decom of chirality-specified ops Bonnet Hirsch O Winter JHEP**1303** (2013) 055

Long Range?

Decomposition which can contain neutrino propagation

For Top #II → Bonnet Hirsch O Winter

List of high *E* completions

		Long	Mediat	or $(U(1)_{em})$	SU(3))	
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],
	(// // /	` '	(, , ,	(, ,	,	LR-symmetric models [39],
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., [62, 63]
			(+1, 8)	(0, 8)	(-1, 8)	[64]
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	$(+4/3, \overline{3})$	(+2, 1)	
			(+1, 8)	(+4/3, 3)	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
			(+1, 8)	(+4/3, 3)	(+1/3, 3)	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(+1/3, \overline{3})$	RPV [58–60], LQ [65, 66]
			(+1, 8)	(0, 8)	(+1/3, 3)	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
	(- D(-)(-)(-)	<i>a</i> >	(+1, 8)	(+5/3, 3)	(+2/3, 3)	DD11 (10 00) T 0 (01 00)
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV [58–60], LQ [65,66]
0	/ I=\/=\/ I\/==\		(+1,8)	(0, 8)	(+2/3, 3)	DD1 (50, 60)
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(-2/3, 3)	(0, 1)	$(+1/3, \overline{3})$	RPV [58–60]
0 ::: 1.	(J=\/J\/=\/==\		$(-2/3, \overline{3})$ $(-2/3, \overline{3})$	(0,8)	$(+1/3, \overline{3})$	RPV [58–60]
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3, 3) (-2/3, 3)	(-1/3, 3) $(-1/3, \overline{6})$	$(+1/3, \overline{3})$ $(+1/3, \overline{3})$	
3-i	(āā\(ā\(ā\(dd\		(-2/3, 3) (+4/3, 3)	(-1/3, 6) (+1/3, 3)	(-2/3, 3)	only with V_{ρ} and V'_{ρ}
ð-1	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 6)	(+1/3, 6)	(-2/3, 6) $(-2/3, 6)$	only with v_{ρ} and v_{ρ}
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		$(+4/3, \overline{3})$	(+5/3, 3)	(-2/3, 6) $(+2, 1)$	only with V_{ρ}
3-II	(aa)(a)(a)(ee)		(+4/3, 6)	(+5/3, 3) $(+5/3, 3)$	(+2, 1) (+2, 1)	only with Vp
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	$(+4/3, \overline{3})$	(+2, 1) $(+2, 1)$	only with V_{ρ}
0	(44)(4)(4)		$(+2/3, \overline{6})$	$(+4/3, \overline{3})$	(+2,1)	51113 TIGHT 1 P
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+2/3, 3)	RPV [58-60]
	(40)(4)(40)	(0)	(-2/3, 3)	(0, 8)	(+2/3, 3)	RPV [58–60]
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2/3, 3)	only with V_a
	()()()		(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	,
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	$(+1/3, \overline{3})$	RPV [58–60]
			(-1/3, 3)	(0, 8)	$(+1/3, \overline{3})$	RPV [58–60]
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	(+1/3, 3)	(-2/3, 3)	only with V'_{ρ}
			(-1/3, 3)	(+1/3, 6)	(-2/3, 6)	•
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3)	(-4/3, 3)	$(-2/3, \overline{3})$	only with V'_{ρ}
			(-1/3, 3)	(-4/3, 3)	(-2/3, 6)	

Possible decompositions and Necessary mediators

(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with U(1) EM charge SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions $(SU(2)_I)$ and $U(1)_Y$
 - → Decom of chirality-specified ops Bonnet Hirsch O Winter JHEP1303 (2013) 055
- Long Range?
 Decomposition which can contain neutrino propagation

List of high *E* completions

		Long	Mediate	or $(U(1)_{em})$	$SU(3)_c$)	
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],
						LR-symmetric models [39],
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., [62, 63]
			(+1, 8)	(0, 8)	(-1, 8)	[64]
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3, 3)	(+2, 1)	
			(+1,8)	(+4/3, 3)	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
	(- D(-)(D(-)	<i>a</i> >	(+1, 8)	$(+4/3, \overline{3})$	(+1/3, 3)	PP11 (vo. on) 1 0 (ov. on)
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	(+1/3, 3)	RPV [58–60], LQ [65, 66]
0."	(= 1)(=)(=)(.1=)		(+1,8)	(0,8)	$(+1/3, \overline{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
2-ii-b	(\vec{u}d\(\vec{v}\)\(\vec{u}\)\(\delta\)	(b)	(+1,8)	(+5/3, 3)	(+2/3, 3)	RPV [58–60], LQ [65, 66]
2-11-1)	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1) (+1, 8)	(0, 1) (0, 8)	(+2/3, 3) (+2/3, 3)	AF V [38-60], LQ [65,66]
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	$(-2/3, \overline{3})$	(0, 0) (0, 1)	(+1/3, 3)	RPV [58-60]
2-111-4	(ac)(a)(a)(ac)	(0)	$(-2/3, \overline{3})$	(0, 1)	$(+1/3, \overline{3})$	RPV [58–60]
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		$(-2/3, \overline{3})$	(-1/3, 3)	$(+1/3, \overline{3})$	11 7 [55 55]
	(/(-/(-/		$(-2/3, \overline{3})$	$(-1/3, \overline{6})$	$(+1/3, \overline{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 3)	(+1/3, 3)	(-2/3, 3)	only with V_{ρ} and V'_{ρ}
			(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	, p
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2, 1)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2, 1)	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	(+4/3, 3)	(+2, 1)	only with V_{ρ}
			$(+2/3, \overline{6})$	(+4/3, 3)	(+2, 1)	
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+2/3, 3)	RPV [58–60]
			(-2/3, 3)	(0, 8)	(+2/3, 3)	RPV [58–60]
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		$(+4/3, \overline{3})$	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}
	/// P / P		(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	(+2/3, 3)	only with V_{ρ}
F :	/==\/J\/J\/==\	(-)	(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	DDV (50 60)
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	$(+1/3, \overline{3})$	RPV [58–60]
5-ii-a	(\$\overline{a}\over		(-1/3, 3)	(0,8)	$(+1/3, \overline{3})$ $(-2/3, \overline{3})$	RPV [58–60] only with V'_a
9-II-8	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3) (-1/3, 3)	$(+1/3, \overline{3})$ (+1/3, 6)	(-2/3, 3) (-2/3, 6)	omy with v _p
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3) (-1/3, 3)	(+1/3, 6) (-4/3, 3)	(-2/3, 6) (-2/3, 3)	only with V'_{ρ}
9-11-0	(ue)(e)(u)(aa)		(-1/3, 3) (-1/3, 3)	(-4/3, 3) (-4/3, 3)	(-2/3, 6) (-2/3, 6)	omy with v _p
			(-1/3,3)	(-4/3,3)	(-2/3, b)	

Possible decompositions and Necessary mediators

(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
 U(1) EM charge
 SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions $(SU(2)_I)$ and $U(1)_Y$
 - → Decom of chirality-specified ops Bonnet Hirsch O Winter JHEP**1303** (2013) 055
- Long Range?
 Decomposition which can contain neutrino propagation

For Top #II → Bonnet Hirsch O Winter

List of high *E* completions

		Long	Mediato	or (U(1) _{em} ,	SU(3))	
#	Decomposition	Range?	$S \text{ or } V_{\rho}$	ψ ₁	S' or V'_a	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],
	(// // /	()	(, , ,	(/ /	(, ,	LR-symmetric models [39],
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., [62, 63]
			(+1, 8)	(0, 8)	(-1, 8)	[64]
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3, 3)	(+2, 1)	
			(+1, 8)	(+4/3, 3)	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
	(- D(-)(D()		(+1, 8)	$(\pm 4/3, 3)$	(+1/3, 3)	DD11 (80 00) TO (07 00)
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	(+1/3, 3)	RPV [58–60], LQ [65,66]
0."	(= I) (=) (=) (I=)		(+1,8)	(0, 8)	(+1/3, 3)	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1,1)	(+5/3, 3)	(+2/3, 3)	
2-ii-b	(54)(5)(5)(45)	(b)	(+1,8)	(+5/3, 3)	(+2/3, 3)	RPV [58-60], LQ [65,66]
Z-II-D	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1) (+1, 8)	(0, 1) (0, 8)	(+2/3, 3) (+2/3, 3)	KF V [58-60], LQ [65,66]
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	$(-2/3, \overline{3})$	(0, 1)	(+2/3, 3) (+1/3, 3)	RPV [58-60]
2-111-4	(ac)(a)(a)(ac)	(0)	$(-2/3, \overline{3})$	(0, 1)	$(+1/3, \overline{3})$	RPV [58–60]
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		$(-2/3, \overline{3})$	(-1/3, 3)	$(+1/3, \overline{3})$	11 1 [60 00]
	()(-)(-)		(-2/3, 3)	$(-1/3, \overline{6})$	(+1/3, 3)	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 3)	(+1/3, 3)	(-2/3, 3)	only with V_{ρ} and V'_{ρ}
	(// // /		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	у р
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		$(+4/3, \overline{3})$	(+5/3, 3)	(+2, 1)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2, 1)	,
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	(+4/3, 3)	(+2, 1)	only with V_{ρ}
			$(+2/3, \overline{6})$	(+4/3, 3)	(+2, 1)	-
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+2/3, 3)	RPV [58–60]
			(-2/3, 3)	(0, 8)	(+2/3, 3)	RPV [58–60]
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \overline{3})$	(+1/3, 3)	(+2/3, 3)	only with V_{ρ}
	/> / B / B />		(+4/3, 6)	(±1/3,6)	(+2/3, 3)	DD11 (50, 00)
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)		RPV [58-60]
E :: -	(55)(5)(5)(33)		(-1/3, 3)	(0,8)	$(+1/3, \overline{3})$	RPV [58–60]
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$			$(+1/3, \overline{3})$		only with V'_{ρ}
E :: 1.	(5.5)(5)(5)(44)			(+1/3, 6) (-4/3, 3)	(-2/3, 6) (-2/3, 3)	only with V'
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$			(-4/3, 3) (-4/3, 3)		only with V'_{ρ}
			(-1/3,3)	(-4/3,3)	(-2/3,0)	

Possible decompositions and Necessary mediators

(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
 U(1) EM charge
 SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions $(SU(2)_L \text{ and } U(1)_Y)$
 - → Decom of chirality-specified ops

 Bonnet Hirsch O Winter

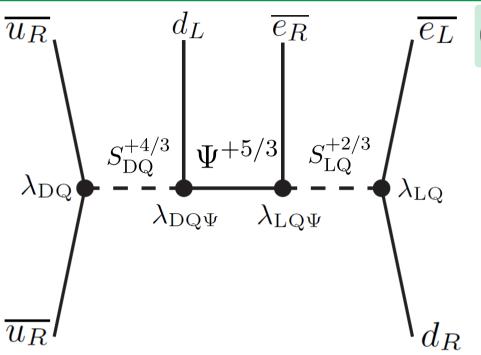
 IHEP1303 (2013) 055
- Long Range?
 Decomposition which can contain neutrino propagation

For Top #II → Bonnet Hirsch O Winter

List of high *E* completions

		Long	Mediat	or $(U(1)_{em})$	$SU(3)_c$)	
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],
						LR-symmetric models [39],
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., [62, 63]
			(+1, 8)	(0, 8)	(-1, 8)	[64]
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3, 3)	(+2, 1)	
			(+1, 8)	(+4/3, 3)	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
			(+1, 8)	(+4/3, 3)	(+1/3, 3)	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	(+1/3, 3)	RPV [58–60], LQ [65, 66]
			(+1, 8)	(0, 8)	(+1/3, 3)	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
		-	(+1, 8)	(+5/3, 3)	(+2/3, 3)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV [58–60], LQ [65, 66]
			(+1, 8)	(0, 8)	(+2/3, 3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+1/3, 3)	RPV [58–60]
	(.)(.)(.)		(-2/3, 3)	(0,8)	(+1/3, 3)	RPV [58–60]
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3, 3)	(-1/3, 3)	(+1/3, 3)	
			(-2/3, 3)	$(-1/3, \overline{6})$	(+1/3, 3)	only with V_{ρ} and V' only with only with at this example A closer local part this example A closer local part A closer
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	$(-2/3, \overline{3})$	only with V_{ρ} and V'
	(-)(-)(-)		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	10 ⁵⁶ ap
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2, 1)	only with
	(• • · · · · · · · · · · · · · · · · ·		(+4/3, 6)	(+5/3, 3)	(+2, 1)	ane riser
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	$(+4/3, \overline{3})$	(+2,1)	is hat this
	/ •-> / -> / •->		(+2/3, 6)	$(+4/3, \overline{3})$	(+2,1)	at us at
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+2/3, 3)	[58-60]
	()(* (-) (* -)		(-2/3, 3)	(0, 8)		
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-11-D	(uu)(e)(a)(ae)		(+4/3,3)	(+1/3, 3)	(+2/3, 3)	only with V_{ρ}
	/>/ D / D />	/ \	(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	DD11 (80, 00)
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	(+1/3, 3)	RPV [58–60]
£	()(-)(-)(IP)		(-1/3, 3)	(0,8)	(+1/3, 3)	RPV [58–60]
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	$(+1/3, \overline{3})$	$(-2/3, \overline{3})$	only with V'_{ρ}
	/>/->/->/ - · ·		(-1/3, 3)	(+1/3, 6)	(-2/3, 6)	1 21 11
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3)	(-4/3, 3)	(-2/3, 3)	only with V'_{ρ}
			(-1/3, 3)	(-4/3, 3)	(-2/3, 6)	

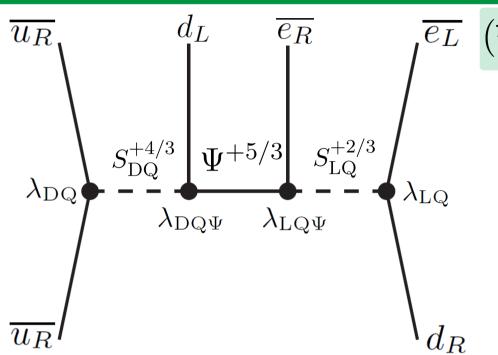
Possible decompositions and Necessary mediators


(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
 U(1) EM charge
 SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions $(SU(2)_L \text{ and } U(1)_Y)$
 - → Decom of chirality-specified ops Bonnet Hirsch O Winter JHEP**1303** (2013) 055
- Long Range?
 Decomposition which can contain neutrino propagation

High E models

$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

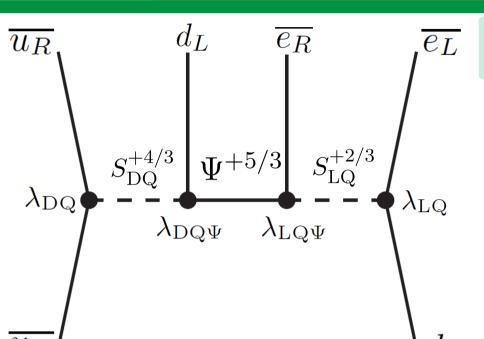

Take scalar mediators Specify the chiralities

$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = \left((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\mathsf{T}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$

$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

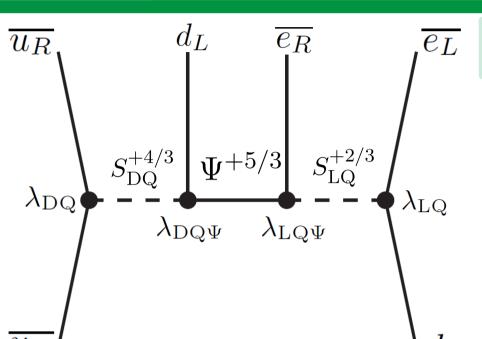

$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$

$$= \frac{\lambda_{\mathrm{DQ}}\lambda_{\mathrm{DQ}\Psi}\lambda_{\mathrm{LQ}\Psi}\lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^{2}m_{\mathrm{LQ}}^{2}m_{\Psi}} \left[(\overline{u_{R}})^{I'a} (T_{\overline{\mathbf{6}}})_{I'J'}^{X} (u_{R}^{c})_{a}^{J'} \right] \left[(\overline{d_{L}^{c}})_{I}^{b} (T_{\mathbf{6}})_{X}^{IJ} (e_{R}^{c})_{b} \right] \left[(\overline{e_{L}})_{\dot{c}} (d_{R})_{J}^{\dot{c}} \right]$$

$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = \left((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\mathsf{T}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$

$$= \frac{\lambda_{\mathrm{DQ}}\lambda_{\mathrm{DQ}\Psi}\lambda_{\mathrm{LQ}\Psi}\lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^2 m_{\mathrm{LQ}}^2 m_{\Psi}} \frac{1}{32} \left[\mathrm{i}(\mathcal{O}_4)_{LR} - (\mathcal{O}_5)_{LR} \right]$$

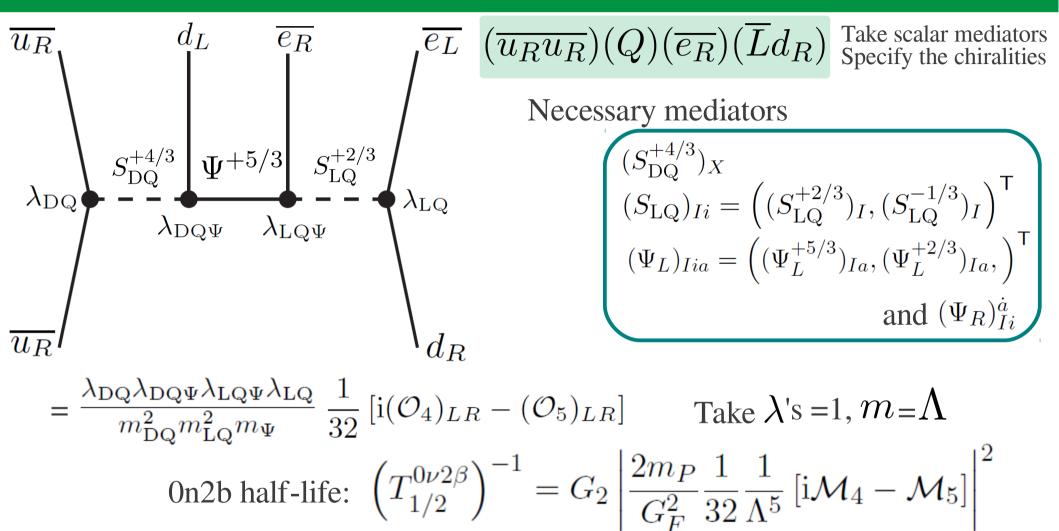
$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

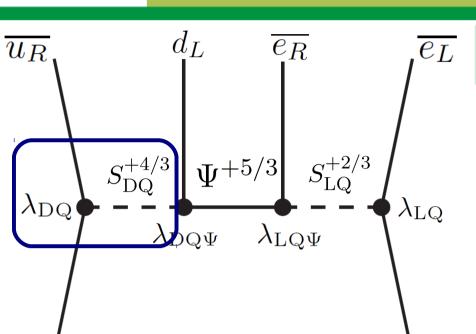
$$(S_{\mathrm{LQ}})_{Ii} = \left((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$

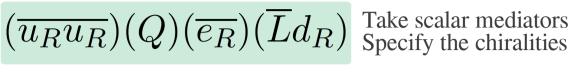
$$(\Psi_{L})_{Iia} = \left((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\mathsf{T}}$$
and
$$(\Psi_{R})_{Ii}^{\dot{a}}$$

$$= \frac{\lambda_{\mathrm{DQ}} \lambda_{\mathrm{DQ}\Psi} \lambda_{\mathrm{LQ}\Psi} \lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^2 m_{\mathrm{LQ}}^2 m_{\Psi}} \frac{1}{32} \left[\mathrm{i}(\mathcal{O}_4)_{LR} - (\mathcal{O}_5)_{LR} \right] \qquad \text{Take } \lambda \text{'s =1, } m = \Lambda$$


$$= \frac{\lambda_{\mathrm{DQ}}\lambda_{\mathrm{DQ}\Psi}\lambda_{\mathrm{LQ}\Psi}\lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^{2}m_{\mathrm{LQ}}^{2}m_{\Psi}} \frac{1}{32} \left[\mathrm{i}(\mathcal{O}_{4})_{LR} - (\mathcal{O}_{5})_{LR} \right] \qquad \text{Take } \lambda \text{'s =1, } m = \Lambda$$

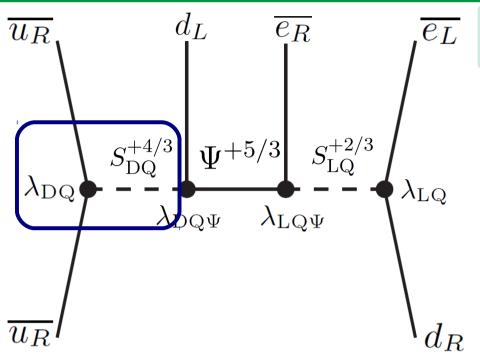
$$0 \text{n2b half-life: } \left(T_{1/2}^{0\nu2\beta} \right)^{-1} = G_{2} \left| \frac{2m_{P}}{G_{F}^{2}} \frac{1}{32} \frac{1}{\Lambda^{5}} \left[\mathrm{i}\mathcal{M}_{4} - \mathcal{M}_{5} \right] \right|^{2}$$




High E models

Q: What does this model suggest to LHC observables?

Necessary mediators


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

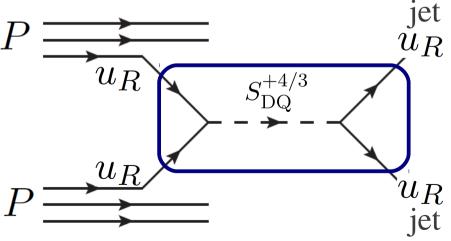
$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

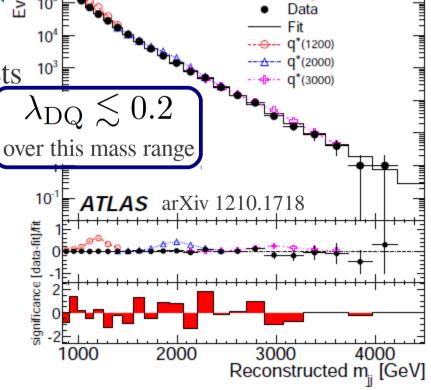
$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$

Diquark (DQ):

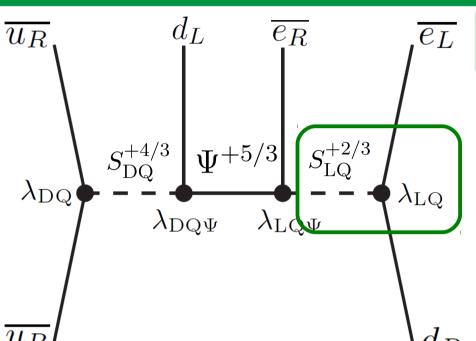
 $(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$

Take scalar mediators Specify the chiralities


 \sqrt{s} =7 TeV, $\int L dt = 4.8 \text{ fb}^{-1}$


Necessary mediators

$$(S_{\mathrm{DQ}}^{+1/3})_{X} = (S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

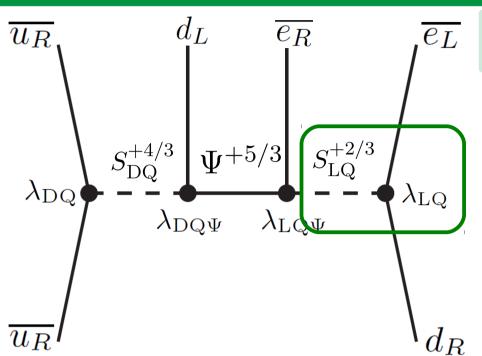

$$(\Psi_{L})_{Iia} = (\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$

• Diquark (DQ): Search for a resonance in 2-jets

$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

Necessary mediators

$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$


$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

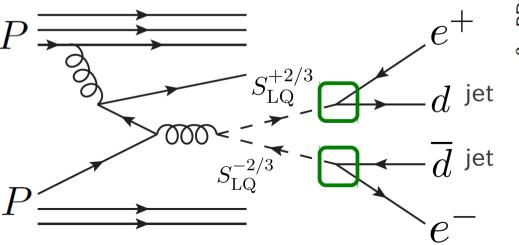
$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$

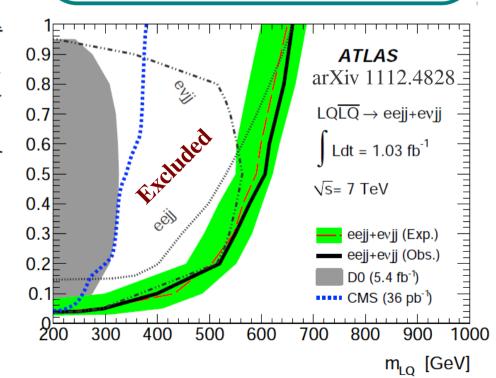
• Leptoquark (LQ):

High E models

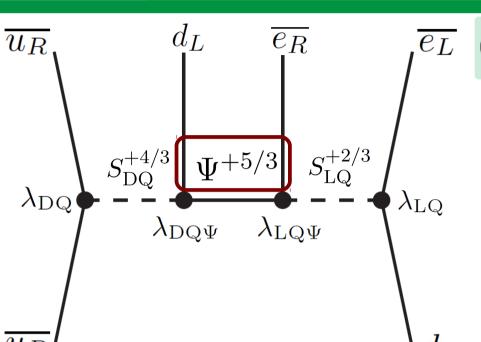
$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$

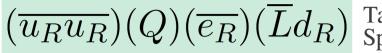
Take scalar mediators Specify the chiralities


Necessary mediators


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

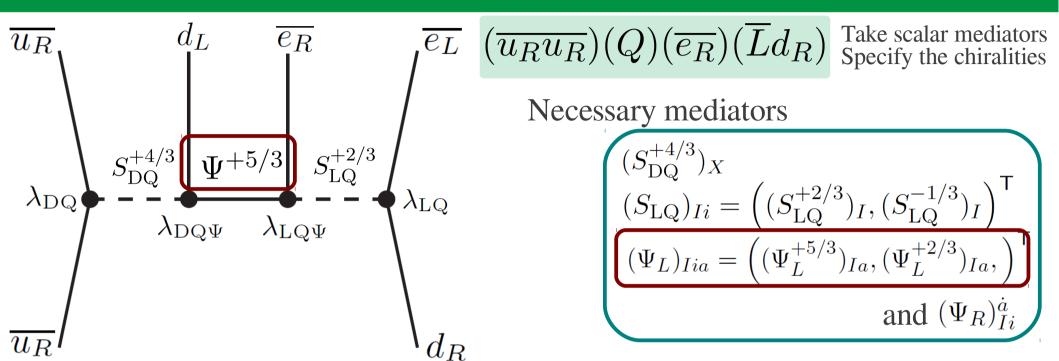

$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$


• Leptoquark (LQ): Search for a (eq)-pair

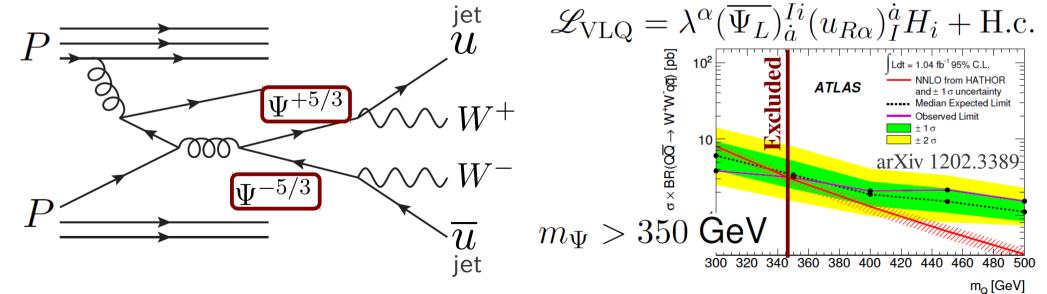
Necessary mediators

$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$


$$(\Psi_{L})_{Iia} = \left((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\dot{a}}$$
and $(\Psi_{R})_{Ii}^{\dot{a}}$

• Vector-like Quark (VLQ):



2

High E models

• Vector-like Quark (VLQ): Search for a (qW)-pair

Outline

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why On2b? Why dim=9 ops?

 $d=9 \text{ ops} \rightarrow \text{half-life time of 0n2b processes}$ "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops \rightarrow decompose them to the fundamental ints.

Summary

- → list the TeV signatures of each completion
- → The list helps us to discriminate the models
- Seeking a relation to the models at the TeV scale

TeV scale models with LNV → Models for radiative neutrino masses

Saitama University d=9 op. : Bridge between neutrino and TeV scale

Summary

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[58–60],
1-i $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ (a) $(+1,1)$ (0,1) $(-1,1)$ Mass mechan., RPV LR-symmetric model Mass mechanism with TeV scale seesaw, e.g. $(+1,8)$ (0,8) $(-1,8)$ [64] 1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ (+1,1) $(+5/3,3)$ (+2,1) $(+1,8)$ $(+5/3,3)$ (+2,1) 1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ (+1,1) $(+4/3,\overline{3})$ (+2,1)	4.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (0.0)
$(+1,8) \qquad (0,8) \qquad (-1,8) \qquad [64]$ 1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e}) \qquad (+1,1) \qquad (+5/3,3) \qquad (+2,1) \qquad (+1,8) \qquad (+5/3,3) \qquad (+2,1)$ 1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e}) \qquad (+1,1) \qquad (+4/3,\overline{3}) \qquad (+2,1)$	ls [39],
1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ $(+1,8)$ $(0,8)$ $(-1,8)$ $[64]$ $(+1,1)$ $(+5/3,3)$ $(+2,1)$ $(+1,8)$ $(+5/3,3)$ $(+2,1)$ 1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ $(+1,1)$ $(+4/3,\overline{3})$ $(+2,1)$	
1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ $(+1,1)$ $(+5/3,3)$ $(+2,1)$ $(+1,8)$ $(+5/3,3)$ $(+2,1)$ 1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ $(+1,1)$ $(+4/3,\overline{3})$ $(+2,1)$	g., [62, 63]
1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ $(+1,8)$ $(+5/3,3)$ $(+2,1)$ $(+1,1)$ $(+4/3,\overline{3})$ $(+2,1)$	
1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ $(+1, 1)$ $(+4/3, 3)$ $(+2, 1)$	
	_
(1 0) (1 1 0 7) (1 0 1)	1
$(+1,8) (+4/3,\overline{3}) (+2,1)$	
2-i-a $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ $(+1,1)$ $(+4/3,3)$ $(+1/3,3)$	
$(+1, 8)$ $(+4/3, \overline{3})$ $(+1/3, \overline{3})$ 2-i-b $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ (b) $(+1, 1)$ $(0, 1)$ $(+1/3, \overline{3})$ RPV [58–60], LQ [6	= ee1
2-i-b $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ (b) $(+1, 1)$ $(0, 1)$ $(+1/3, \overline{3})$ RPV [58–60], LQ [6 $(+1, 8)$ $(0, 8)$ $(+1/3, \overline{3})$	5,00]
2-ii-a $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ $(+1,3)$ $(0,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$	
(+1,1) $(+5/3,3)$ $(+2/3,3)$ $(+1,8)$ $(+5/3,3)$ $(+2/3,3)$	
2-ii-b $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ (b) $(+1,1)$ $(0,1)$ $(+2/3,3)$ RPV [58–60], LQ [6	5.66]
(+1,8) $(0,8)$ $(+2/3,3)$	3,331
2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(-2/3, \overline{3})$ $(0, 1)$ $(+1/3, \overline{3})$ RPV [58–60]	
$(-2/3, \overline{3})$ $(0, 8)$ $(+1/3, \overline{3})$ RPV [58–60]	
2-iii-b $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ $(-2/3, \overline{3})$ $(-1/3, 3)$ $(+1/3, \overline{3})$	
$(-2/3,\overline{3})$ $(-1/3,\overline{6})$ $(+1/3,\overline{3})$	
3-i $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ $(+4/3, \overline{3})$ $(+1/3, \overline{3})$ $(-2/3, \overline{3})$ only with V_{ρ} and V'_{ρ}	
(+4/3, 6) $(+1/3, 6)$ $(-2/3, 6)$	
3-ii $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ $(+4/3, \overline{\bf 3})$ $(+5/3, \bf 3)$ $(+2, \bf 1)$ only with V_{ρ}	
(+4/3, 6) $(+5/3, 3)$ $(+2, 1)$	
3-iii $(dd)(\bar{u})(\bar{e}\bar{e})$ $(+2/3, 3)$ $(+4/3, 3)$ $(+2, 1)$ only with V_{ρ}	
$(+2/3, \overline{6})$ $(+4/3, \overline{3})$ $(+2, 1)$	
4-i $(d\bar{e})(\bar{u})(d\bar{e})$ (c) $(-2/3, \overline{3})$ (0, 1) $(+2/3, 3)$ RPV [58–60]	
$(-2/3, \overline{3})$ $(0, 8)$ $(+2/3, 3)$ RPV [58–60]	
4-ii-a $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ $(+4/3, \overline{3})$ $(+5/3, 3)$ $(+2/3, 3)$ only with V_{ρ}	A
$(+4/3, 6)$ $(+5/3, 3)$ $(+2/3, 3)$ see Sec. 4 (this work 4-ii-b $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ $(+4/3, \mathbf{\overline{3}})$ $(+1/3, \mathbf{\overline{3}})$ $(+2/3, 3)$ only with V_{ρ})
4-ii-b $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ $(+4/3, \overline{3})$ $(+1/3, \overline{3})$ $(+2/3, 3)$ only with V_{ρ} $(+4/3, 6)$ $(+1/3, 6)$ $(+2/3, 3)$	
5-i $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ (c) $(-1/3,3)$ $(0,1)$ $(+1/3,3)$ RPV [58–60]	
(-1/3, 3) $(0, 1)$ $(+1/3, 3)$ RPV [58-60]	
5-ii-a $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ $(-1/3,3)$ $(+1/3,\overline{3})$ $(-2/3,\overline{3})$ only with V_{ρ}	
(-1/3,3) $(+1/3,6)$ $(-2/3,6)$ start $(-1/3,3)$ $(-1/3,6)$ $(-2/3,6)$	
5-ii-b $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ $(-1/3,3)$ $(-4/3,3)$ $(-2/3,3)$ only with V'_{o}	
(-1/3,3) $(-4/3,3)$ $(-2/3,6)$	

What can we learn from this table? If 0n2b conflicts with cosmological obs.,

It could be a large d=9 contribution

d=9 op. : Bridge between neutrino and TeV scale

Summary

	D 101	Long		or (U(1) _{em} ,		V 11 (D 5 (G
# 1-i	Decomposition $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	Range?	$S \text{ or } V_{\rho}$ $(+1, 1)$	ψ $(0, 1)$	$S' \text{ or } V'_{\rho}$ $(-1, 1)$	Models/Refs./Comments Mass mechan., RPV [58–60],
1-1	(44)(0)(0)(44)	(a)	(11,1)	(0, 1)	(1,1)	LR-symmetric models [39],
	Co	lau	, O			Mass mechanism with ν_S [61]
	CO	lou	(+1.8)	(0.8)	(-1.8)	TeV scale seesaw, e.g., [62, 63
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3.3)	(+2, 1)	[64]
	(/(-/(-/		(+1,8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3.3)	(+2, 1)	Colour 2
2-i-a	(5d)(d)(5)(55)		(+1.8)	(+4/3.3)	(+2, 1) (+1/3, 3)	Colour 3
Z-1-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1) (+1, 8)	$(\pm 4/3, 3)$	(+1/3, 3)	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(\pm 1/3. \overline{3})$	RPV [58–60], LQ [65, 66]
	(- D(-)(-)(-)		(+1, 8)	(0, 8)	(±1/3 3)	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1) (+1, 8)	(+5/3, 3) (+5/3, 3)	$(\pm 2/3, 3)$ $(\pm 2/3, 3)$	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	$\pm 2/3$, 31 $\pm 2/3$, 3)	RPV [58–60], LQ [65, 66]
			(+1, 8)	(0, 8)	(+2/3, 3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(-2/3,3)	(0, 1)	(+1/3, 3)	
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3.3) (-2/3.3)	(0.8) (-1/3.3)	$(\pm 1/3. \overline{3})$ $(\pm 1/3. \overline{3})$	RPV [58–60]
2 111 15	(40)(4)(40)		(-2/3, 3)	(-1/3, 6)	(+1/3, 3)	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 3)	(+1/3, 3)	[-2/3, 3)	only with V_{ρ} and V'_{ρ}
9 ::	(==)(J)(J)(==)		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		(+4/3, 3) (+4/3, 6)	(+5/3, 3) (+5/3, 3)	(+2, 1) (+2, 1)	only with V_{ρ}
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3.3)	(+4/3, 3)	(+2, 1)	only with V_{ρ}
			(±2/3, 6)	(+4/3, 3)	(+2, 1)	·
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3,3) (-2/3,3)	(0, 1) (0, 8)	(+2/3, 3) (+2/3, 3)	L 1
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		$(\pm 4/3.3)$	$(\pm 5/3.3)$	$(\pm 2/3, 3)$	only with V_o
	(/(-/(-/(/		(+4/3, 6)	(+5/3,3)	(±2/2, 2)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	$(\pm 2/3, 3)$	only with V_{ρ}
5-i	(\(\bar{u}\varepsilon\) \(\d\) \(\d\) \(\bar{u}\varepsilon\)	(a)	(+4/3.6)	(+1/3.6)	(±2/3.3)	RPV [58–60]
9-1	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3,3) (-1/3,3)	(0, 1) (0, 8)	(+1/3, 3) (+1/3, 3)	
5-ii- a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3.3)	$(+1/3, \overline{3})$	(-2/3, 3)	only with V'_{ρ}
			(-1/3.9)	$(\pm 1/3, 6)$	(-2/3, 6)	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		$\frac{(-1/2, 9)}{(-1/3, 3)}$	(-4/3, 3) (-4/3, 3)	(-2/3, 3) (-2/3, 6)	only with V'_{ρ}
			(=1/3.3)	1-4/3.3	-2/3.01	

What can we learn from this table?

If 0n2b conflicts with cosmological obs.,

It could be a large d=9 contribution

Such a large d=9 contribution should leave the trace in LHC except for T-I-1-i (and T-II-1) that does not contain a coloured mediator

Colour 6

d=9 *op.* : *Bridge between neutrino and TeV scale*

Summary

		Long	Mediat	or $(U(1)_{em}, I$			-
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments	V
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],	
						LR-symmetric models [39],	
						Mass mechanism with ν_S [61]	
			(+1.8)	(0.8)	(-1.8)	TeV scale seesaw, e.g., [62, 63]	
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3.3)	(+2, 1)	[64]	
1-11-4	(44)(4)(4)(66)		(+1, 1)	(+5/3, 3)	(+2, 1) $(+2, 1)$		
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1,1)	(+4/3, 3)	(+2, 1)		T
	(/(-/(-/		(+1.8)	(+4/3.3)	(+2, 1)		
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1,1)	(+4/3, 3)	(+1/3, 3)		_
			(+1.8)	(+4/3, 3)	$(\pm 1/3, 3)$		
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	(+1/3.3)	RPV [58–60], LQ [65, 66]	
			(+1, 8)	(0, 8)	(±1/3 3)		
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	$(\pm 9/3, 9)$		
0 :: 1	(=J\/=\/=\/J=\	(1-)	(+1.8)	(+5/3,3)	(+2/3, 3)	DDV [50 60] 1.0 [65 66]	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV [58–60], LQ [65, 66]	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(+1,8) (-2/3,3)	(0, 8) (0, 1)	(+2/3, 3) (+1/3, 3)	RPV [58-60]	
2-111-a	(ae)(a)(a)(ae)	3 "	(-2/3.3)	(0, 1)	$(\pm 1/3, 3)$	RPV [58–60]	
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3.3)	(-1/3.3)	$(\pm 1/3 \ \overline{3})$	11 1 [00 00]	
	(/(-/(-/		(-2/3, 3)	(-1/3, 6)	(+1/3, 3)		
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 3)	(+1/3, 3)	-2/3, 3)	only with V_{ρ} and V'_{ρ}	_
			(+4/3, 6)	(+1/3, 6)	-2/3, 6)	,	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2, 1)	only with V_{ρ}	
			(+4/3, 6)	$(\pm 5/3, 3)$	(+2, 1)		
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3.3)	(+4/3.3)	(+2, 1)	only with V_{ρ}	
	/ • · · · · · · · · · · · · · · · · · ·		(+2/3, 6)	(+4/3 3)	(+2, 1)	DD11 (10.00)	_
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3.3) (-2/3.3)	(0, 1) (0, 8)	(+2/3, 3) (+2/3, 3)	RPV [58–60]	
4-ii-a	(55)(4)(5)(45)		(-2/3.8)	(4.5/3.3)	$(\pm 2/3, 3)$	RPV [58–60] only with V_{ρ}	
4-11-4	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		(±4/3 6	(+5/3 3)	(±2/2 Q)	see Sec. 4 (this work)	
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		(+4/3, 3)	(+1/3, 3)	(+2/3, 3)	only with V_{ρ}	
1111	(44)(5)(4)(45)		(+4/3.6)	(+1/3.6)	$(\pm 2/3, 3)$	οιις ποι τ _ρ	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	(+1/3, 3)	RPV [58–60]	_
			(-1/3, 3)	(0, 8)	(+1/3, 3)	RPV [58–60]	
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3,3)	$(+1/3, \overline{3})$	(-2/3, 3)	only with V'_{ρ}	
			(-1/3.9	(+1/3, 6)	(-2/3, 6)		
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/2,9)	(-4/3, 3)	(-2/3, 3)	only with V'_{ρ}	
			(-1/3,3)	(-4/3, 3)	(-2/3, 6)		_

What can we learn from this table? If 0n2b conflicts with

on2b conflicts with cosmological obs.,

It could be a large d=9 contribution

Such a large d=9 contribution should leave the trace in LHC except for T-I-1-i (and T-II-1) that does not contain a coloured mediator

T-I-1-i can be examined at ILC! exotic interactions with electron!

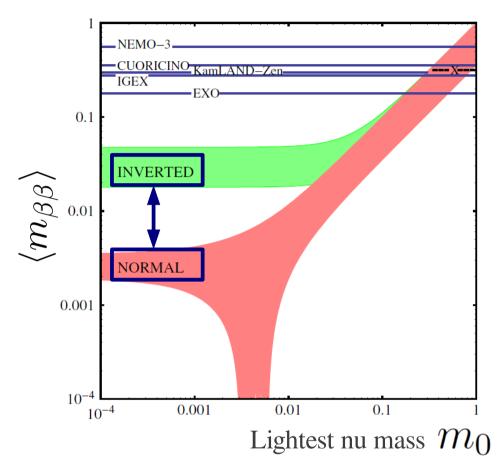
d=9 *op.* : *Bridge between neutrino and TeV scale*

Summary

		Long	Mediat	or $(U(1)_{em},$			**
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments	W
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],	
						LR-symmetric models [39],	
						Mass mechanism with ν_S [61]	
			(+1.8)	(0.8)	(-1.8)	TeV scale seesaw, e.g., [62, 63] [64]	
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3.3)	(+2, 1)	[04]	
	(/(-/(-/(/		(+1,8)	(+5/3, 3)	(+2, 1)		
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	$(\pm 4/3, 3)$	(+2, 1)		It
			(+1.8)	$(+4/3, \overline{3})$	(+2, 1)		11
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)		
			(+1.8)	(+4/3, 3)	$(+1/3, \overline{3})$		
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(\pm 1/3.3)$	RPV [58–60], LQ [65,66]	
2-ii-a	(=J\(=\(=\(J=\		(+1, 8) (+1, 1)	(0, 8)	$(\pm 9/3 \ 3)$		
Z-11-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1) (+1, 8)	(+5/3, 3) (+5/3, 3)	(+2/3,3)		
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	+2/3, 31	RPV [58-60], LQ [65, 66]	
21115	(44)(0)(40)	(12)	(+1, 8)	(0, 8)	(+2/3, 3)	11 1 [55 55], 114 [55,55]	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+1/3, 3)	RPV [58-60]	
			(-2/3.3)	(0.8)	$(\pm 1/3, 3)$	RPV [58–60]	
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3, 3)	(-1/3,3)	$(\pm 1/3.3)$		
			(-2/3, 3)	(-1/3, 6)	(+1/3, 3)		_
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3,3)	$(\pm 1/3, 3)$	[-2/3, 3)	only with V_{ρ} and V'_{ρ}	
9 ::	(==\/J\/J\/==\		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)		
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		(+4/3, 3) (+4/3, 6)	(+5/3, 3) (+5/3, 3)	(+2, 1) (+2, 1)	only with V_{ρ}	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		$(\pm 2/3.3)$	$(\pm 4/3, 3)$	(+2, 1) (+2, 1)	only with V_{ρ}	
0 111	(44)(4)(4)(66)		(±2/3 6	(+4/3 3)	(+2, 1)	only with 1p	
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	(-2/3,3)	(0, 1)	(+2/3, 3)	RPV [58-60]	_
			(-2/3, 3)	(0, 8)	$(\pm 2/3, 3)$	RPV [58–60]	
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		(+4/3 9	(±5/3 9)	(±2/3 3)	only with V_{ρ}	
			(±4/3,6)	(+5/3,3)	(±2/3,3)	see Sec. 4 (this work)	
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		(+4/3, 3)	(+1/3, 3)	(+2/3,3)	only with V_{ρ}	
5-i	(\$\overline{a}\)(d\\(\overline{a}\)((+4/3.6)	(+1/3.6)	$(\pm 2/3.3)$	DDV [EQ 60]	_
9-1	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$		(-1/3,3) (-1/3,3)	(0, 1) (0, 8)	(+1/3,3) (+1/3,3)	RPV [58–60] RPV [58–60]	
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3,3)	$(\pm 1/3, 3)$	(-2/3, 3)	only with V'_{ρ}	
- 11 11	(20)(0)(00)		(-1/3.9	(+1/3.6)	(-2/3.6)	ςρ	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/9,9	(-4/3, 3)	(-2/3, 3)	only with V'_{ρ}	
			(-1/3,3)	(-4/3, 3)	(-2/3, 6)	- r	

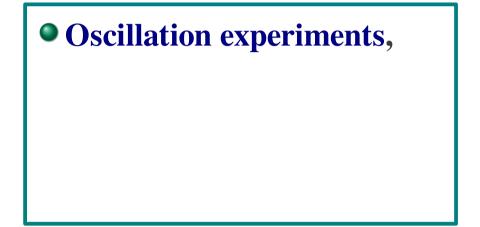
What can we learn from this table?

If 0n2b conflicts with cosmological obs.,

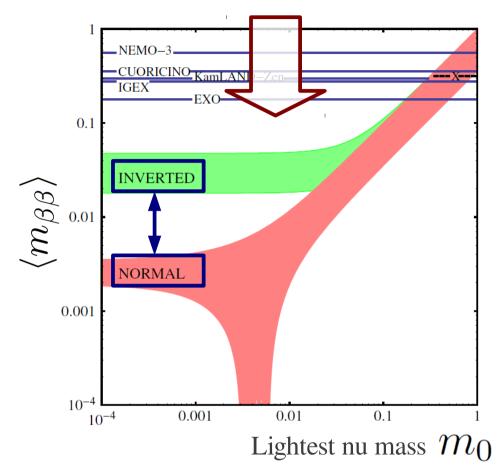

It could be a large d=9 contribution

Such a large d=9 contribution should leave the trace in LHC except for T-I-1-i (and T-II-1) that does not contain a coloured mediator

T-I-1-i can be examined at ILC! exotic interactions with electron!


My 2nd last message:

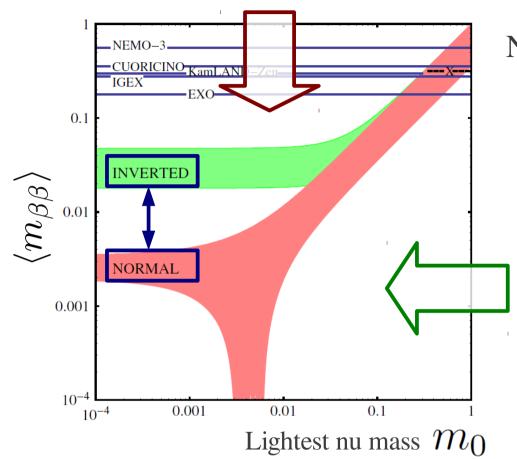
On2b exps, cosmological obs, LHC and ILC are complementary!



Standard 3nu parameter space

Neutrino mass search is the foremost front where

face to the *Neutrino effective theory* in the Universe

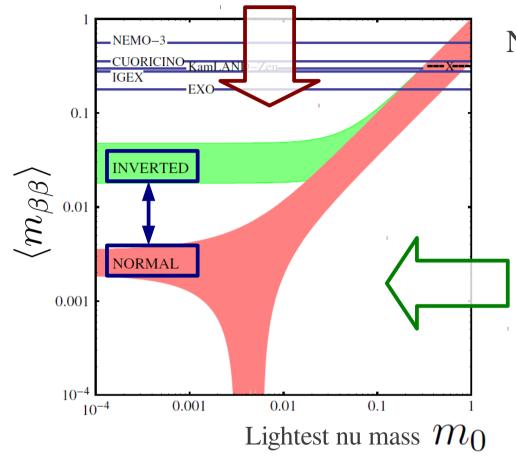


Standard 3nu parameter space

Neutrino mass search is the foremost front where

- Oscillation experiments,
- 0n2b decay experiments,

face to the *Neutrino effective theory* in the Universe


Standard 3nu parameter space

Neutrino mass search is the foremost front where

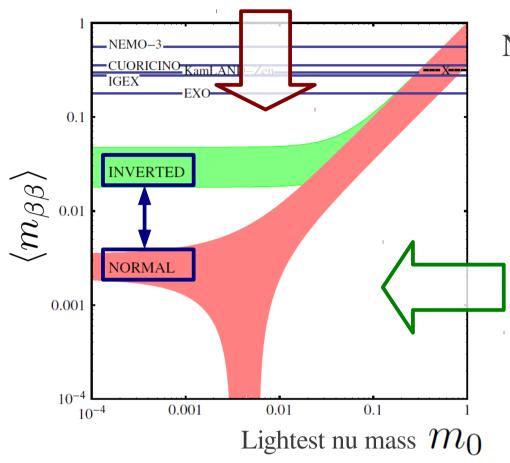
- Oscillation experiments,
- 0n2b decay experiments,
- Cosmological observations,

(and also collider signals),

face to the Neutrino effective theory in the Universe

Standard 3nu parameter space

Neutrino mass search is the foremost front where


- Oscillation experiments,
- 0n2b decay experiments,
- Cosmological observations,

(and also collider signals),

face to the *Neutrino effective theory*in the *Universe*

If something unexpected will happen on this plane...

In this talk we focus on the particle physics side. How about cosmological side?

Standard 3nu parameter space

Neutrino mass search is the foremost front where

- Oscillation experiments,
- 0n2b decay experiments,
- Cosmological observations,

(and also collider signals),

face to the *Neutrino effective theory*in the *Universe*

If something unexpected will happen on this plane...

In this talk we focus on the particle physics side. How about cosmological side?

Cosmological side: Possible disturbance of neutrino mass bound?

Dark matter effective theory? and its high *E* completions?

Outline

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why 0n2b? Why dim=9 ops?

 $d=9 \text{ ops} \rightarrow \text{half-life time of 0n2b processes}$ "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

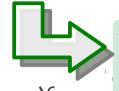
 $\text{In } \text{progress } \text{discussion} \rightarrow \text{list the TeV signatures of each completion} \rightarrow \text{The list helps us to discussion} \rightarrow \text{The list helps us to discussion}$

→ The list helps us to discriminate the models

Seeking a relation to the models at the TeV scale

TeV scale models with LNV → Models for radiative neutrino masses

Maybe, we have already known the mediators appear in the big table...

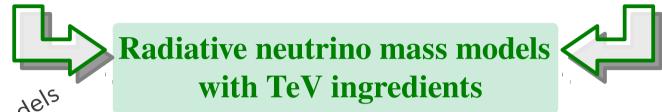

• They have masses of the TeV scale • #L must be violated in somewhere

Maybe, we have already known the mediators appear in the big table...

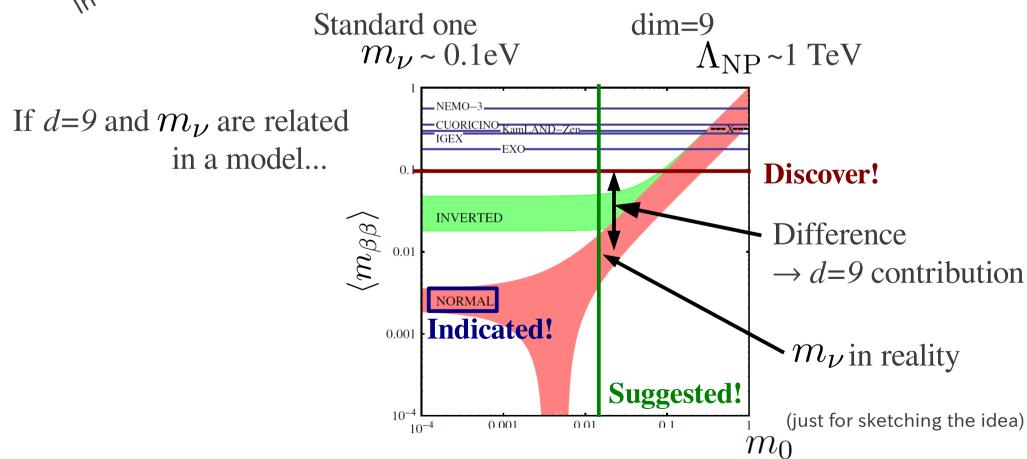
• They have masses of the TeV scale • #L must be violated in somewhere

Radiative neutrino mass models with TeV ingredients

Size of two contributions to 0n2b can be comparable!


Standard one $m_{\nu} \sim 0.1 \text{eV}$

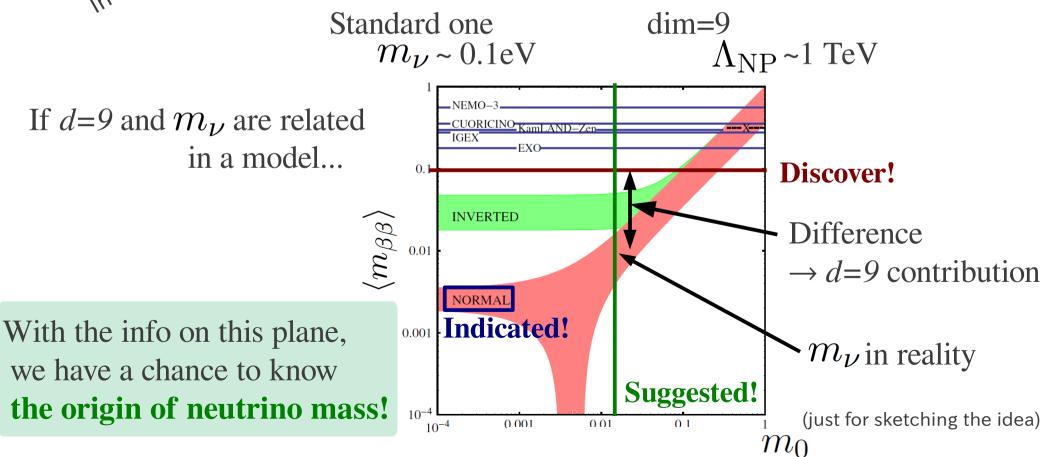
dim=9 $\Lambda_{\rm NP}$ ~1 TeV



Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

in such missize of two contributions to 0n2b can be comparable!



Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

in such "Size of two contributions to 0n2b can be comparable!

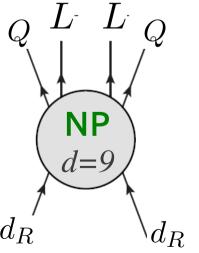
Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

Radiative neutrino mass models with TeV ingredients

Size of two contributions to 0n2b can be comparable!

Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$


dim=9
$$\Lambda_{\rm NP} \sim 1 \text{ TeV}$$

Examples introduced in recent papers, based on Decomposition of $LLQQd_Rd_R$

Coloured Babu-Zee model with LQ(3, 1, -1/3), DQ(6, 1, -2/3)

Kohda Sugiyama Tsumura PLB718 (2013) 1436

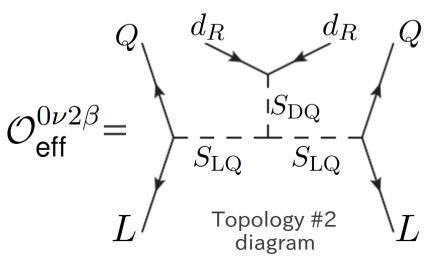
$$\mathcal{O}_{\mathsf{eff}}^{0
u2eta} =$$

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

Radiative neutrino mass models with TeV ingredients

In such most Size of two contributions to 0n2b can be comparable!


Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$

dim=9 $\Lambda_{\rm NP} \sim 1 {\rm TeV}$

Examples introduced in recent papers, based on Decomposition of LLQQd_Rd_R

Coloured Babu-Zee model with LQ(3, 1, -1/3), DQ(6, 1, -2/3)

Kohda Sugiyama Tsumura PLB718 (2013) 1436

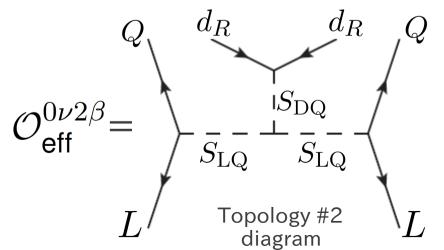
Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

Radiative neutrino mass models with TeV ingredients

In such models Size of **two contributions** to 0n2b can be comparable!

Standard one


ndard one dim=9
$$M_{\nu} \sim 0.1 {\rm eV}$$
 $\Lambda_{\rm NP} \sim 1 {\rm TeV}$

Examples introduced in recent papers, based on Decomposition of $LLQQd_Rd_R$

Coloured Babu-Zee model with LQ(3, 1, -1/3), DQ(6, 1, -2/3)

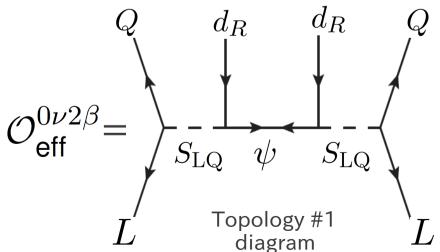
Kohda Sugiyama Tsumura PLB718 (2013) 1436

$$m_{
u} = L$$
 $Q \mid d_R \mid d_R \mid Q$
 $H_d \mid H_d$

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

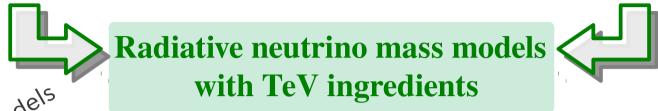
In such most Size of two contributions to 0n2b can be comparable!


Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$

dim=9 $\Lambda_{\rm NP} \sim 1 \text{ TeV}$

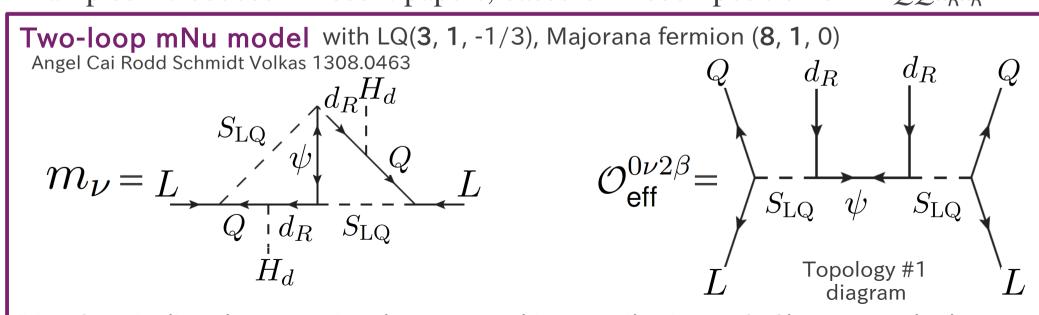
Examples introduced in recent papers, based on Decomposition of $LLQQd_Rd_R$

Two-loop mNu model with LQ(3, 1, -1/3), Majorana fermion (8, 1, 0)


Angel Cai Rodd Schmidt Volkas 1308.0463

Maybe, we have already known the mediators appear in the big table...

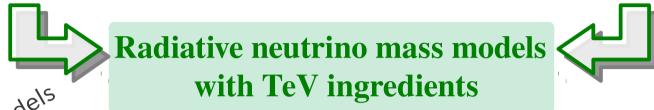
• They have masses of the TeV scale • #L must be violated in somewhere



In such most Size of two contributions to 0n2b can be comparable!

Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$

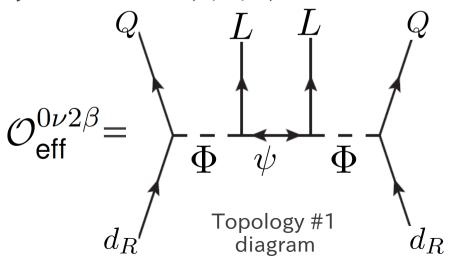
dim=9 $\Lambda_{\rm NP} \sim 1 {\rm TeV}$


Examples introduced in recent papers, based on Decomposition of $LLQQd_Rd_R$

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

In such "Size of **two contributions** to 0n2b can be comparable!

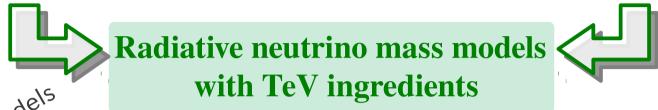

Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$

dim=9 $\Lambda_{\rm NP} \sim 1 {\rm TeV}$

Examples introduced in recent papers, based on Decomposition of $LLQQd_Rd_R$

Colour-8 mNu model with Scalar (8, 2, 1/2), Majorana fermion (8, 1, 0)
Choubey Duerr Mitra Rodejohann JHEP 1205 (2012) 017

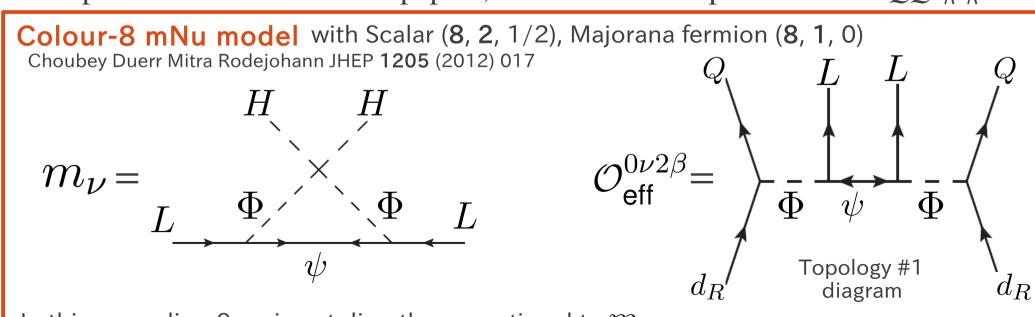
Q. 1.



In this case, dim=9 op is not directly proportional to $m_
u$

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



In such "Size of two contributions to 0n2b can be comparable!

Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$

dim=9 $\Lambda_{\rm NP} \sim 1 \text{ TeV}$

Examples introduced in recent papers, based on Decomposition of $LLQQd_Rd_R$

In this case, dim=9 op is not directly proportional to $m_
u$

3 5

Seeking the relation to the models

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

Radiative neutrino mass models with TeV ingredients

In such most size of two contributions to 0n2b can be comparable!

Standard one $m_{\nu} \sim 0.1 \mathrm{eV}$

dim=9
$$\Lambda_{\rm NP}$$
 ~1 TeV

Neutrino mass models based on the effective operator approach

Schechter Valle Phys. Rev. D25 (1982) 2951

Babu Leung Nucl Phys **B619** (2001) 667

de Gouvea Jenkins Phys. Rev. **D77** (2008) 013008

del Aguila Aparici Bhattacharya Santamaria Wudka JHEP **1206** (2012) 146, JHEP **1205** (2012) 133

Angel Rodd Volkas Phys. Rev. **D87** (2013) 073007

Farzan Pascoli Schmidt JHEP 1303 (2013) 107

and more...

Back up slides

Neutrino mass bound from cosmological observations

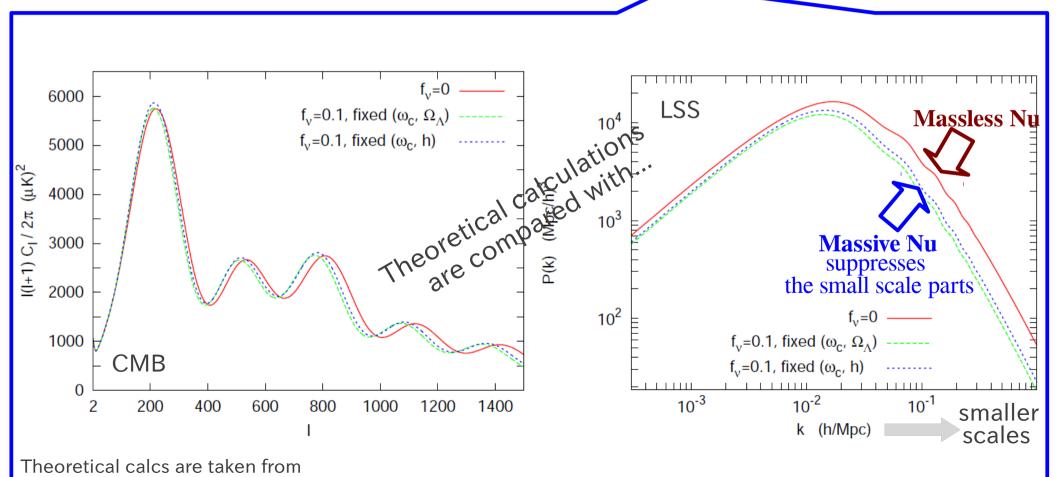
2 LR symmetric model as a Decomposition of dim=9 op

Why 0n2b? Why d=9 op.?

Effective neutrino mass

→ Talk by Hasegawa (Aug)

On2b exp are sensitive to
 Effective nu mass


Phys.Rep 429 (2006) 307

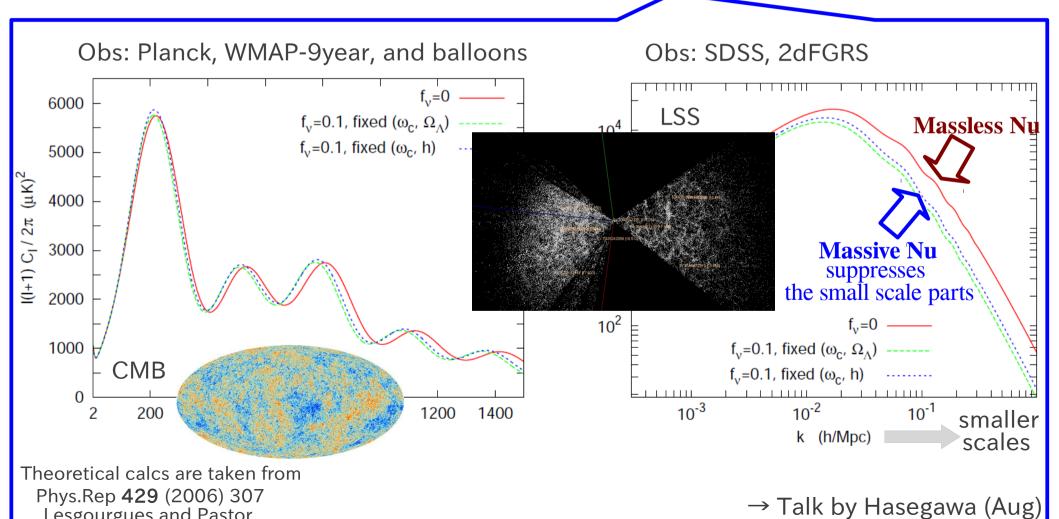
Lesgourgues and Pastor

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain
 Sum of nu masses

 $\sum_{i=1}^{3} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$

Why 0n2b? Why d=9 op.? Effective neutrino mass

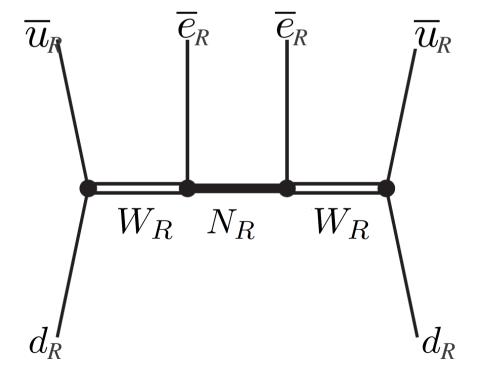

• **0n2b exp** are sensitive to Effective nu mass

Lesgourgues and Pastor

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

 $\sum m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$



An example,

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$

Necessary mediators

$$egin{array}{lll} V(+1,\mathbf{1}) & W_R \ V'(-1,\mathbf{1}) & W_R \ \psi(0,\mathbf{1}) & N_R \end{array}$$

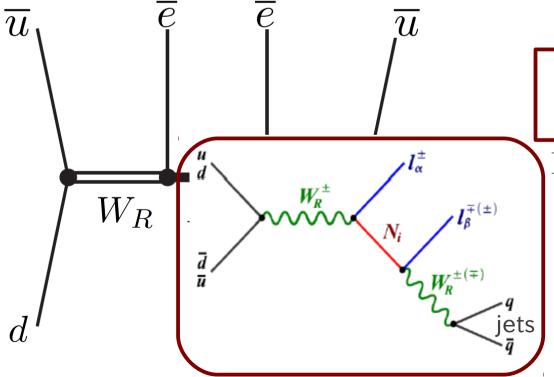
where $(U(1)_{em}, SU(3)_{c})$

Left-right symmetric model

All the outer fermions are right-handed

Bound from 0n2b

Riazuddin Marshak Mohapatra PRD24 (1981) 1310


$$M_{N_R} = M_{W_R} > 1.3 \text{ TeV } (g_L = g_R)$$

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$

Necessary mediators

$$V(+1,\mathbf{1})$$
 W_R $V'(-1,\mathbf{1})$ W_R $\psi(0,\mathbf{1})$ N_R

where $(U(1)_{em}, SU(3)_{c})$

Left-right symmetric model

All the outer fermions are right-handed

Bound from 0n2b

Riazuddin Marshak Mohapatra PR**D24** (1981) 1310

$$M_{N_R} = M_{W_R} > 1.3 \text{ TeV } (g_L = g_R)$$

N_R and W_R collider search

Rizzo, Phys. Lett. **B116** (1982) 23 Keung Senjanovic, Phys. Rev. Lett **50** (1983) 1427 ATLAS search for 2 leptons+jets: arXiv.1203.5420