

Nucifer Experiment at Osiris

Yo KATO
The University of Tokyo
7 December 2013

Nucifer Collaboration

In2p3

Reactor Monitoring

Reactor monitoring using antineutrino detectors

- -- Neutrinos cannot be shielded -> can be detected outside a reactor building
- -- There's no alternative source of antineutrino -> cannot hide reactor operation
 - -> Suitable for IAEA's inspection!

Reactor Neutrino

$$^{235}U+n \rightarrow X_1 + X_2 + \cdots + n + n + \cdots$$

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}X' + e^{-} + \bar{\nu_{e}}$$

$$_{Z+1}^{A}X' \rightarrow _{Z+2}^{A}X'' + \cdots$$

- 6 antineutrinos

- 200MeV emitted per fission

Previous experiments

- -- ROVNO experiment (Ukraine, 1984)
- -- SONGS experiment (California, 2006)
- -- KASKA Prototype experiment (Japan, 2007)

PANDA

Nucifer

Osiris

- -- Experimental nuclear reactor
- -- 70 MW_{th}, enriched ²³⁵U fuel (20%)
- -- Operating cycle: 3 weeks ON + 10 days OFF
- -- Distance between core and detector: 7 m
- -- 11 m underground, 10 m.w.e. overburden

Backgrounds

Accidental background

- -- Natural radioactivity (gamma)
- -- Thermal neutrons

-> Can be estimated using shifted time window

Correlated background

-- <u>Fast neutrons</u> (prompt-like event : proton recoil)

- -- Double neutron capture (caused by muon spallation)
- -- Long-lived cosmic ray activation product (9Li, 8He)
- -> Can be estimated using reactor off data

$$N_{\bar{\nu_e}} = N_{\mathrm{corr}}^{\mathrm{ON}} - N_{\mathrm{acc}}^{\mathrm{ON}} - N_{\mathrm{corr}}^{\mathrm{OFF}}$$

Selection Cuts

Energy Cut

Prompt Q _{tot}	2 – 6 MeV
Delayed Q _{tot}	6 – 10 MeV

Time Cut

Delta T	5 – 45 μs
Clean Before Window	> 50 μs
Clean After Window	> 100 µs

PSD Cut

0.25

Qtail/Qtot []

0.4

0.35

Reactor State Accidental Rate [/day]		Correlated Rate [/day]
On	4372 ± 6	251 ± 17
Off	35.3 ± 0.3	123 ± 6
On - Off		$\textbf{128} \pm \textbf{18}$

Good agreement with expected rate 132 events/day (12% efficiency)

New Cuts

Energy Cut

	Old cut	New cut
Prompt Q _{tot}	2 – 6 MeV	2.0 – 7.1 MeV
Delayed Q _{tot}	6 – 10 MeV	4.2 – 9.6 MeV

Time Cut

	Old cut	New cut
Delta T	5 – 45 μs	5 – 40 μs
Clean Before Window	> 50 μs	> 50 μs
Clean After Window	> 100 µs	> 100 µs

Expected rate: 272 events/day

(Old cut: 132 events/day)

	PS	D Cut				
Otal/Otot [] :35	- - - - - -	Noblina (L. N)				25
0.3	-		WANTE	Mark Mark	MAN Man K	-20
0.25			The part of the pa			15
0.2		What T. I. S.				10
0.15	— ī					5
50	00	1000	1500	2000	2500 Qtot [_l	3000 pe]

	Old cut	New cut
Low cut	QQ>0.18	QQ>0.18
High cut	QQ<0.26	QQ<0.282-1.77e-05×Qtot

Summary

- First neutrinos were detected by Nucifer in April-May 2013.
- Good agreement of measured neutrino signal with simulations.
- New selection cuts have been optimized.
- New data are being taken since November 2013.
- Study of detector systematics is now on-going.