バリオン共鳴とニュートリノ反応

鎌野 寛之 (大阪大学核物理研究センター)

- ✓ バリオン分光とは
- ✓ 昨今のバリオン分光研究の動向、遷移形状因子とバリオン構造
- ✓ バリオン分光の観点から見たニュートリノ反応
- ✓ まとめ

新学術領域「ニュートリノフロンティア」研究会、2013年12月7・8日

									1						
	р	$1/2^{+}$	****	$\Delta(1232)$	3/2+ ****	Σ^+	$1/2^{+}$	****	Ξ^0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****	
	п	$1/2^{+}$	****	$\Delta(1600)$	3/2+ ***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***	
	N(1440)	$1/2^{+}$	****	$\Delta(1620)$	1/2 ****	Σ^{-}	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	$A_{c}(2625)^{+}$	3/2-	***	C 100 100 100
	N(1520)	3/2-	****	$\Delta(1700)$	3/2 ****	$\Sigma(1385)$	$3/2^{+}$	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$		*	
	N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$ *	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***	1.
	N(1650)	$1/2^{-}$	****	$\Delta(1900)$	1/2 **	$\Sigma(1560)$		**	$\Xi(1820)$	3/2-	***	$\Lambda_{c}(2940)^{+}$		***	1.000
	N(1675)	$5/2^{-}$	****	$\Delta(1905)$	5/2 ⁺ ****	$\Sigma(1580)$	3/2-	*	$\Xi(1950)$	-	***	$\Sigma_c(2455)$	$1/2^{+}$	****	
	N(1680)	$5/2^{+}$	****	$\Delta(1910)$	1/2+ ****	$\Sigma(1620)$	$1/2^{-}$	**	$\Xi(2030)$	$\geq \frac{5}{2}$?	***	$\Sigma_c(2520)$	$3/2^{+}$	***	
	N(1685)		*	$\Delta(1920)$	3/2+ ***	$\Sigma(1660)$	$1/2^{+}$	***	$\Xi(2120)$	-	*	$\Sigma_c(2800)$		***	
	N(1700)	3/2-	***	$\Delta(1930)$	5/2- ***	$\Sigma(1670)$	3/2-	****	$\Xi(2250)$		**	Ξ_c^+	$1/2^{+}$	***	
	N(1710)	$1/2^{+}$	***	$\Delta(1940)$	3/2 **	$\Sigma(1690)$		**	$\Xi(2370)$		**	Ξ_{c}^{0}	$1/2^{+}$	***	
	N(1720)	$3/2^{+}$	****	$\Delta(1950)$	7/2+ ****	$\Sigma(1750)$	$1/2^{-}$	***	$\Xi(2500)$		*	Ξ'^+	$1/2^{+}$	***	
	N(1860)	$5/2^{+}$	**	$\Delta(2000)$	5/2+ **	$\Sigma(1770)$	$1/2^{+}$	*				='0	$1/2^{+}$	***	100 C
	N(1875)	$3/2^{-}$	***	$\Delta(2150)$	1/2 *	$\Sigma(1775)$	$5/2^{-}$	****	Ω^{-}	$3/2^{+}$	****	$\Xi_{c}^{(2645)}$	$3/2^{+}$	***	
	N(1880)	$1/2^{+}$	**	$\Delta(2200)$	7/2 *	$\Sigma(1840)$	$3/2^{+}$	*	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	$1/2^{-}$	***	1.
	N(1895)	$1/2^{-}$	**	$\Delta(2300)$	9/2+ **	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2380)^{-}$		**	$\Xi_{c}(2815)$	3/2-	***	1.000
	N(1900)	$3/2^{+}$	***	$\Delta(2350)$	5/2 *	$\Sigma(1915)$	$5/2^{+}$	****	$\Omega(2470)^{-}$		**	$\Xi_{c}(2930)$	-, -	*	
	N(1990)	$7/2^{+}$	**	$\Delta(2390)$	7/2+ *	$\Sigma(1940)$	$3/2^{-}$	***				$\Xi_{c}(2980)$		***	
	N(2000)	$5/2^{+}$	**	$\Delta(2400)$	9/2 **	$\Sigma(2000)$	$1/2^{-}$	*				$\Xi_{c}(3055)$		**	
	N(2040)	$3/2^{+}$	*	$\Delta(2420)$	11/2 ⁺ ****	$\Sigma(2030)$	$7/2^{+}$	****				$\Xi_{c}(3080)$		***	
	N(2060)	$5/2^{-}$	**	$\Delta(2750)$	13/2 **	$\Sigma(2070)$	$5/2^{+}$	*				$\Xi_{c}(3123)$		*	
	N(2100)	$1/2^{+}$	*	$\Delta(2950)$	15/2 ⁺ **	$\Sigma(2080)$	$3/2^{+}$	**				Ω^0_{α}	$1/2^{+}$	***	
	N(2120)	$3/2^{-}$	**			$\Sigma(2100)$	$7/2^{-}$	*				$\Omega_{c}(2770)^{0}$	$3/2^{+}$	***	
	N(2190)	7/2	****	Λ	$1/2^+$ ****	$\Sigma(2250)$		***					-, -		
	N(2220)	$9/2^{+}$	****	A(1405)	1/2 ****	$\Sigma(2455)$		**				Ξ_{aa}^+		*	1.
	N(2250)	9/2-	****	A(1520)	3/2 ****	$\Sigma(2620)$		**				66			1000
	N(2600)	11/2-	***	$\Lambda(1600)$	$1/2^+$ ***	$\Sigma(3000)$		*				Λ_{b}^{0}	$1/2^{+}$	***	
	N(2700)	$13/2^+$	**	A(1670)	1/2- ****	$\Sigma(3170)$		*				Σ_b	$1/2^{+}$	***	
				$\Lambda(1690)$	3/2 ****							Σ_{b}^{*}	$3/2^{+}$	***	
				$\Lambda(1800)$	1/2 ***							Ξ_{b}^{0}, Ξ_{b}^{-}	$1/2^{+}$	***	
				Λ(1810)	1/2+ ***							Ω_{b}^{-}	$1/2^{+}$	***	
				A(1820)	5/2+ ****							D	/		
				A(1830)	5/2 ****										Contraction of the
				$\Lambda(1890)$	3/2 ⁺ ****										
				A(2000)	*										1.1.1.1.1.1.1.1.1
				A(2020)	7/2+ *										CONTRACTOR OF
				A(2100)	7/2 ****										
Kan		nc		A(2110)	5/2 ***							DDC	11	201	2).
Dai				/(2325)	3/2 *							L DC			4].
				/(2350)	9/2 ***							h 44 m			Ibl act
				71(2585)	**							ηττρ	.//	Jag	IDI.GOV

$\frac{p}{n}$ $\frac{1}{1}$./2 ⁺ **** ./2 ⁺ ****	⊿(1232) ⊿(1600)	3/2 ⁺ **** 3/2 ⁺ ***	$\frac{\Sigma^+}{\Sigma^0}$	$\frac{1/2^+ ****}{1/2^+ ****}$	<u>=</u> 0 =-	$\frac{1/2^+ ****}{1/2^+ ****}$	$\frac{\Lambda_c^+}{\Lambda_c(2595)^+} \frac{1/2^+}{1/2^-}$	**** ***	
N(1440) = 1 N(1520) = 3	./2 ⁺ **** /2 ⁻ ****	$\Delta(1620)$	1/2 ⁻ **** 3/2 ⁻ ****	$\frac{\Sigma^{-}}{\Sigma(1385)}$	$\frac{1/2^+ ****}{3/2^+ ****}$	$\Xi(1530)$ $\Xi(1620)$	3/2 ⁺ **** *	$A_c(2625)^+ 3/2^-$	*** *	qqc (l=0)
N(1535) 1	./2 ****	$\Delta(1750)$	$1/2^+$ *	$\Sigma(1303)$ $\Sigma(1480)$	*	$\Xi(1620)$ $\Xi(1690)$	***	$\Lambda_c(2880)^+$ 5/2 ⁺	***	
N(1650) 1/ N(1675) 5/	/2 ⁻ **** /2 ⁻ ****	$\Delta(1900)$ $\Delta(1905)$	$1/2^{-} **$ $5/2^{+} ****$	$\Sigma(1560)$ $\Sigma(1580)$	** 3/2 ⁻ *	$\Xi(1820)$ $\Xi(1950)$	3/2 ⁻ *** ***	$\Lambda_c(2940)^+$ $\Sigma_c(2455) 1/2^+$	***	

Baryon Spectroscopy: Understanding nature of baryons and their excitations

Mass, width, spin, parity ...?

Internal structure?

How produced in reaction processes?

How interact with other particles?

	-												1			1	
	р	$1/2^{+}$	****	$\Delta(1232)$	$3/2^{+}$	****	Σ^+	1/2+ ***	* -	E ⁰ 1/	2^{+}	****	Λ_c^+	$1/2^{+}$	****		
	п	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	1/2+ ***	* -	<u> </u>	2^{+}	****	$\Lambda_{c}(2595)$)+ 1/2-	***		
	N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	<u>Σ</u> -	1/2+ ***	* -	E(1530) 3/	2^{+}	****	$A_{c}(2625)$)+ 3/2-	***		aao (I_0)
	N(1520)	3/2-	****	$\Delta(1700)$	3/2	****	$\Sigma(1385)$	3/2+ ***	* 1	E(1620)		*	$\Lambda_{c}(2765)$)+	* 🔻		qqc (i=0)
1.1.1.1.1.1.1.1	N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	$\Sigma(1,80)$	*	-	E(1690)		***	$\Lambda_{c}(2880)$)+ 5/2+	***		[a - u or d]
	N(1650)	$1/2^{-}$	****	$\Delta(1900)$	1/2	**	$\Sigma(1560)$	**	-	E(1820) 3/	2	***	$\Lambda_{c}(2940)$)+	***		
19.00	N(1675)	5/2	****	$\Delta(1905)$	$5/2^+$	****	$\Sigma(1,580)$	3/2 *	-	E(1950)	- 2	***	$\Sigma_c(2455)$	$) 1/2^+$	****		
Isosnin	N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^+$	****	$\Sigma(1,20)$	1/2 **	-	$\Xi(2030) \ge$	$\frac{5}{2}$	***	$\Sigma_c(2520$) 3/2+	***		aao (I_1)
looopiii	N(1685)	- 1-	*	$\Delta(1920)$	3/2+	***	$\Sigma(1.60)$	1/2+ ***		E(2120)		*	$\Sigma_{c}(2800$)	***		qqc (i=1)
	N(1700)	3/2-	***	$\Delta(1930)$	5/2-	***	$\Sigma(1.70)$	3/2- ***	* -	E(2250)		**	$\frac{\Xi_{c}^{+}}{\Xi_{c}^{-}}$	$1/2^+$	***		In
	N(1710)	1/2+	***	$\Delta(1940)$	3/2	**	$\Sigma(1.90)$	**		E(2370)		**	$=^{0}_{c}$	1/2+	***		$[\mathbf{q} = \mathbf{u} \text{ or } \mathbf{a}]$
qqq (l=1/2)	N(1720)	3/2	****	$\Delta(1950)$	7/2+	****	$\Sigma(1,50)$	1/2 ***	-	=(2500)		*	$\frac{\Xi'^+}{c}$	$1/2^+$	***		
	N(1860)	5/2 -	**	$\Delta(2000)$	5/2	**	$\Sigma(1/70)$	1/2 *	, T	2- 0	/a+	****	$\Xi_{c}^{\prime 0}$	$1/2^{+}$	***		asc(1-1/2)
[q = u or d]	N(1875)	3/2	**	$\Delta(2150)$	1/2	* *	$\Sigma(1/5)$	5/2 ****		$\frac{2}{3}$	2 '	***	$\Xi_c(2645)$) 3/2+	***		430 (i= 1/2)
	N(1880)	1/2 -	**	$\Delta(2200)$	1/2 0/0+	т **	$\Sigma(1340)$	3/2 *	2	2(2250)		**	$\Xi_{c}(2790$) 1/2-	***		
	N(1895)	2/2	***	$\Delta(2300)$	9/2 · 5/2	*	$\Sigma(1.80)$ $\Sigma(1.15)$	1/2 * ** 5/0 ⁺ ***	*	2(2380) 2(2470)=		**	$\Xi_{c}(2815$) 3/2-	***		
Sec.	N(1900)	3/2 ·	**	$\Delta(2350)$	5/2 7/2+	*	$\Sigma(1,15)$ $\Sigma(1,10)$	2/2 ***	. 17	2(2470)		T	$\Xi_c(2930$)	*		1.
	N(2000)	F/2+	**	$\Delta(2390)$	0/2	**	$\Sigma(1,40)$	1/2 *		T			$\Xi_c(2980$)	***		
	N(2000)	3/2	*	$\Delta(2400)$	9/2	- ****	$\Sigma(2,00)$	1/2 · 7/2+ ***	*			<u> </u>	$\Xi_c(3055)$)	**		ssc (I=0)
-	N(2040)	5/2 -	**	$\Delta(2420)$ $\Delta(2750)$	12/2	- **	$\Sigma(2,30)$ $\Sigma(2,30)$	5/2 ⁺ *		qss	(l=1/	(2)	$\Xi_c(3080$)	***		
2	N(2000)	1/2+	*	$\Delta(2750)$	15/2	- **	$\Sigma(2,10)$	3/2+ **			•	´	$\Xi_{c}(3123)$)	*		
	N(2100)	3/2	**	<u>д(2950)</u>	15/2		$\Sigma(2,00)$	7/2 *		[q =	u or	'd]	Ω_c^0	1/2+	***		qcc (l=1/2)
	N(2120) N(2190)	7/2	****	Λ	$1/2^{+}$	****	$\Sigma(2,50)$	***				-	$\Omega_c(2770$)° 3/2+	***		
	N(2220)	$9/2^+$	****	$\Lambda(1405)$	1/2-	****	$\Sigma(2.55)$	**					-+		*		[q = u or d]
	N(2250)	9/2-	****	$\Lambda(1520)$	3/2-	****	$\Sigma(2,20)$	**				7	- <u>cc</u>		+		
	N(2600)	11/2-	- ***	$\Lambda(1600)$	$1/2^{+}$	***	$\Sigma(3,00)$	*					A0	1/2+	***		
	N(2700)	13/2+	+ **	$\Lambda(1670)$	1/2-	****	Σ (3170)	*		SSS (I=U)			Σ.	1/2	***		(U=I) app
	()	, _		$\Lambda(1690)$	3/2-	****		-				┘	$\frac{Z_b}{\Sigma^*}$	3/2+	***		In
			Í	/(1800)	1/2	***		\					=0 =-	$\frac{3/2}{1/2^+}$	***		
			 /	A(1810)	$1/2^{+}$	***		uas (l=1)					$\frac{-b}{O^{-}}$	1/2	***		
	qqq	(I=3/2)	V	A(1820)	$5/2^{+}$	****				aab	(=1)		32 b			N	mah (1 4/2)
			1	A(1830)	$5/2^{-}$	****	L I	a = u or d									qsb (I=1/2)
	[q =	u or d]		A(1890)	$3/2^{+}$	****		4		[a = 1	ı or	d1	[
				A(2000)		*								ssb (l=	=0)		$[\mathbf{q} = \mathbf{u} \text{ or } \mathbf{a}]$
				Л(2020)	$7/2^{+}$	*							l				
				Λ(2100)	7/2	****											
Ra		n		Л(2110)	$5/2^{+}$	***		s (I=0)					DD	C I	204	2	
Dal				A(2325)	3/2-	*	1 4	3 (I-U)					L D	914	201	4	
				/(2350)	9/2+	***	Ia	- u or di					644-	- <u>1</u> .			
				71(2585)		ተተ							ηττ	D://	pag		IDI.gov

ユニタリーな多チャンネル反応模型

動的結合チャンネル模型 [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193] $T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b; E) + \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$ $F + \sum_{c} \sum_{c} \int_{0}^{\infty} q^2 dq V_{a,c}^{(LSJ)}(p_a, q; E) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$

例)πN散乱

中間過程における反応チャンネル間の遷移のあらゆる可能性を 全て足しあげる!!

ユニタリーな多チャンネル反応模型

動的結合チャンネル模型 [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} q^{2} dq V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$F \tau > \overline{\lambda} \lambda A = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma, \cdots)$$

 $\pi\pi N$

現況:

πN → πN, ηN, KΛ, KΣ (s^{1/2} < 2.1 GeV) γN → πN, ηN, KΛ, KΣ (s^{1/2} < 2.1 GeV)

の微分断面積・偏極量の現存する全ての データを包括的に解析し、反応模型 を構築(模型パラメータを決定)。

HK, Nakamura, Lee, Sato, PRC88(2013)035209

ユニタリーな多チャンネル反応模型

動的結合チャンネル模型 [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

遷移形状因子とバリオン構造

遷移形状因子とバリオン構造

遷移形状因子とバリオン構造

遷移形状因子とバリオン構造

遷移形状因子とバリオン構造

✓ N*, Δ* 共鳴領域におけるニュートリノ - 核子反応
 (→ strangeness-conserving process)

✓ N*, Δ* 共鳴領域におけるニュートリノ - 核子反応
 (→ strangeness-conserving process)

軸性カレントによる遷移形状因子を直接調べられるほぼ唯一の反応!!

- ▶ 電磁(ベクトル)カレントによる遷移形状因子とは独立した情報を提供。
- ▶ 格子QCDによる計算も行われている。[e.g., Alexandrou et al., PRL107,141601 (2011)]

バリオン分光の観点から見たニュートリノ反応

動的結合チャンネル模型のニュートリノ反応への最初の応用:

HK, Nakamura, Lee, Sato, PRD86(2012)097503

前方極限(→ Q²=0)におけるニュートリノ - 核子反応(共鳴領域)の評価

→ PCACを利用すると、πN反応振幅を用いて求められる。

→ πN, γN反応の包括的解析から得られたπN反応振幅を用いて予言。

Finite Q² に適用できる反応模型を現在開発中 (HK, Lee, Nakamura, Sato)

ニュートリノ反応実験に期待するデータ

原子核媒質効果のない(少ない)<mark>陽子、重陽子標的</mark>の ニュートリノ反応(exclusive)データ

データ数の少なさは、抽出される遷移形状因子の不定性にダイレクトに反映される。

ニュートリノ反応実験に期待するデータ

原子核媒質効果のない(少ない)<mark>陽子、重陽子標的</mark>の ニュートリノ反応(exclusive)データ

データ数の少なさは、抽出される遷移形状因子の不定性にダイレクトに反映される。

 「素過程の信頼できる反応模型を作ることは ニュートリノ-原子核間相互作用を理解する うえでも重要!!

- ベクトルカレントの形状因子や原子核媒質効果は、 原理的には電子/光子 - 原子核反応から決められる。
- 一番の不定性は素過程の軸性カレントによる 形状因子部分と予想される。

まとめ

- ✓ 質量スペクトルや崩壊幅の研究に加え、バリオン内部構造の より定量的/系統的な研究が近年活発に行われるようになった。
 - > 電子/光子ビームによる中間子生成反応の高統計データが次々に報告。
 - 多反応チャンネル間の動的結合を適切に取り入れた八ドロン反応模型が登場。 スパコンを用いた大規模数値解析が可能になった。
 - ▶ 格子QCD計算の進展により、QCDとの"直接的"な比較も可能になりつつある。

まとめ

- ✓ 質量スペクトルや崩壊幅の研究に加え、バリオン内部構造の より定量的/系統的な研究が近年活発に行われるようになった。
 - 電子/光子ビームによる中間子生成反応の高統計データが次々に報告。
 - 多反応チャンネル間の動的結合を適切に取り入れた八ドロン反応模型が登場。 スパコンを用いた大規模数値解析が可能になった。
 - ▶ 格子QCD計算の進展により、QCDとの"直接的"な比較も可能になりつつある。
- ✓ ニュートリノ反応は、軸性カレントや strangenesschangingカレントによる遷移形状因子の情報に 直接アクセスできる唯一の反応。

Strangeness-changing neutrino reaction

まとめ

- ✓ 質量スペクトルや崩壊幅の研究に加え、バリオン内部構造の より定量的/系統的な研究が近年活発に行われるようになった。
 - 電子/光子ビームによる中間子生成反応の高統計データが次々に報告。
 - 多反応チャンネル間の動的結合を適切に取り入れた八ドロン反応模型が登場。 スパコンを用いた大規模数値解析が可能になった。
 - ▶ 格子QCD計算の進展により、QCDとの"直接的"な比較も可能になりつつある。
- ✓ ニュートリノ反応は、軸性カレントや strangenesschangingカレントによる遷移形状因子の情報に 直接アクセスできる唯一の反応。
- ✓ 遷移形状因子の研究には、陽子・重陽子標的のニュートリノ 反応断面積データが不可欠!!

ニュートリノ-核子反応模型の精密化は、 ニュートリノ-原子核間相互作用の理解にも直結。