スーパーカミオカンデにおける 大気ニュートリノの研究

奥村公宏 (東大宇宙線研) 新学術領域研究「ニュートリノフロンティア」研究会 2013年12月7日 @ クロスウェーブ府中

- $v_{\mu}, \overline{v}_{\mu}, v_{e}, \overline{v}_{e}$
- 広いエネルギースペクトル sub-GeV ~ TeV, PeV, ...
- 飛行距離の天頂角依存
 O(10km) ~ 10⁴km
- Free !

天頂角分布、L/E

Two-flavor oscillation: $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27\Delta m_{32}^2 L}{E}\right)$

Sub-dominant 振動モード

原子炉・加速器ニュートリノ測定による θ_{13} の発見:

- 大気ニュートリノで θ_{13} による $v_{\mu} \rightarrow v_{e}$ 振動
- 物質効果による質量階層性の識別が可能
- δ_{CP}、θ₂₃ octant にも感度あり

物質効果と質量階層性(MH)

物質中での $v_u \rightarrow v_e$ 振動確率 (solar term $\Delta m_{21}^2 \epsilon$ 無視)

 m^2 m^2 m_{2}^{2} . $-m_2^2$ solar~8×10⁻⁵eV atmospheric ~2.5×10-3eV2 atmospheric ~2.5×10-3eV2 m_2^2 solar~8×10-5eV2 $m_1^2_{-}$ $-m_3^2$ 9 9 0 0 Normal Inverted Hierarchy Hierarchy $(\Delta m_{32}^2 > 0)$ $(\Delta m_{32}^2 < 0)$

$$v$$
の場合 $A_{cc} \rightarrow -A_{cc}$

5

物質効果と質量階層性(MH)

ニュートリノ事象と反ニュートリノ事象を区別できれば、MH識別の可能性あり

Super-Kamiokande Aug-2002 Apr-20 THU SK-III **SK-IV** SK-I SK-II 11146 ID PMTs **Electronics** 5182 ID PMTs 11129 ID PMTs (40% coverage) (19% coverage) (40% coverage) Upgrade 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 SK-II SK-III SK-I **SK-IV** (828days) (636 days) (1646days) 50kt水チェレンコフ検出器(FV22.5kt) SK-IV 2008年10月より

大気ニュートリノの事象タイプ

- 水チェレンコフでレプトン電荷による v / 反v 識別はほぼ不可能
- Kinematicsの違いやπ粒子の終状態による統計的な分別を行う

Kinematics による違い:

	CC v _e	CC anti-v _e	
レプトンエネルギー比率	Smaller	Larger	
Transverse momentum (P _T)	Larger	Smaller	
チェレンコフリング数	More	Less	

Single-Ring 事象: 崩壊電子の有無で分別

Multi-Ring 事象:

反応 kinematics、崩壊電子数を用いた Likelihood 法による分別:

Separation後:

Composition	า (%)	$CC \nu_{e}$	CC anti- v _e	$CC \nu_\mu \text{+anti-} \nu_\mu$	NC
ν_{e} like	1R	60.2	10.6	13.5	14.8
	MR	57.5	17.4	10.7	13.7
Anti-v _e like	1R	55.7	36.6	1.1	6.4
Ũ	MR	51.9	20.7	8.2	19.7

 $P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}^{M} \sin^{2} \left(\frac{1.27 \Delta m_{31,M}^{2} L}{E}\right)$

MH, $sin^2\theta_{23}$ effect

Normal / Inverted で v_e -like と anti- v_e -like での増加量に違い $sin^2\theta_{23}$ にも依存

CP phase effect

error bar: Super-K 10 yrs

P-cos θ 分布を NH/IH, Δm_{32}^2 , θ_{23} , δ_{CP} で χ^2 フィット sin² θ_{13} は0.025 に fixed

Normal vs Inverted

- $\delta_{CP} \sim 220 \text{ deg}$
- 2nd octant

今後の期待感度 (Current SK + 5yrs)

- バンド幅はCPδ依存性

- 階層性決定確度~2σ @ sin²θ₂₃=0.6

- octant決定確度~2σ @ sin²θ₂₃=0.6 (SK only)

Possible improvements

- 事象再構成性能の向上
 - 全PMTの電荷・時間情報を用いた事象再構成
 - v_{μ} CC、NC、 $v_{\mu} \rightarrow v_{\tau}$ バックグラウンドの除去
- 加速器ニュートリノによる測定との combined analysis
- 反跳中性子捕獲による2.2 MeV ガンマの 遅延信号による反ニュートリノ同定

otal Volume

nner Volume

iducial Volume

Outer Volume

oto-sensors

0.99 Megaton 0.74 Mton

0.2 Megaton

 より大きな検出器でmulti-GeV事象の 統計を増やす (Hyper-Kamiokande)

Hyper-K MH sensitivity

Hyper-K θ_{23} octant, CP sensitivity

- Sterile neutrino
- 大気ニュートリノフラックス測定

Sterile Neutrinos

•Searches using SK atmospheric data are independent of sterile Δm^2 and number of sterile neutrinos

 3+1 models and 3+N models have same signature in Super-K

Signature is shape distortion in

Atmospheric neutrinos can say something about:

 $|U_{\mu4}|^2$: Signature is extra v_{μ} disappearance in all μ -like data samples, at all energies and angles

angular distribution of higher energy subsamples

 $|U_{\tau 4}|^2$

Sterile Neutrinos

Reactors/Ga ~ $|U_{e4}|^2$ SBL $\lor_{\mu} \rightarrow \lor_{e}$ ~ $|U_{e4}|^2 |U_{\mu4}|^2$ Global fit to both, assuming 3+1, gives allowed regions in $|U_{\mu4}|^2$

Fit for $|U_{\mu4}|^2$ in SK-I+II+III+IV data (1631 days): $|U_{\mu4}|^2 < 0.021$ at 90% C.L. $|U_{\mu4}|^2 < 0.031$ at 99% C.L.

SK excludes a large portion of the global allowed regions.

Sterile Neutrinos

Fit for $|U_{\tau 4}|^2$ in SK-I+II+III+IV data (1631 days): $|U_{\tau 4}|^2 < 0.22$ at 90% C.L. $|U_{\tau 4}|^2 < 0.27$ at 99% C.L. $|U_{\tau 4}|^2 \approx \frac{P(\mu \to s)}{P(\mu \to s)}$

as
$$|U_{\mu4}|^2
ightarrow 0$$

Constraint from *not* seeing sterile matter effect

Conclusion from both fits:

Limits from SK are applicable to both 3+1 and 3+N models.

SK sees no evidence of oscillations with sterile neutrinos.

大気ニュートリノフラックス測定

- 本新学術研究による共同研究
 Ao3(大気ニュートリノ)
 Ao4(宇宙ニュートリノ)
- Super-Kと IceCube による広い
 エネルギー領域(sub-GeV ~10¹⁴ eV)の
 測定データ
- Super-K: フラックス計算でのハドロン 生成による不定性に制限
- IceCube: PeV 領域の宇宙ニュートリノ 測定のバックグラウンド系統誤差の縮小
- 共同研究によりさらなる研究課題発掘を 期待

Summary

- 有限の θ₁₃による v_µ → v_e 振動、物質効果により、
 大気ニュートリノでMass hierarchy 決定の可能性
- 統計的 v / 反 v 識別を行い、MH感度を向上させた
- 今後、解析手法の改良によりさらなる感度向上を 目指すと共に、Hyper-K計画を進める
- Sterile: SKで兆候なし。|U_{µ4}|², |U_{τ4}|² について制限
- 大気ニュートリノフラックス測定において、
 新学術グループ内の共同研究を進めている