TZK

T2K実験の最新結果と 系統誤差5%への道

木河達也 (京都大学) for the T2K collaboration

新学術領域「ニュートリノフロンティアの 融合と進化」研究会 2013 2013年12月7日

T2K実験

- J-PARCでほぼ純粋な v_{μ} ビームを生成。
- 生成点直後の前置検出器と295km離れた
 スーパーカミオカンデでニュートリノを観測。

• ニュートリノ振動の精密測定。

T2K実験における振動モード 1. $\nu_{\mu} \rightarrow \nu_{e} (\nu_{e}$ 出現モード) 2. $\nu_{\mu} \rightarrow \nu_{\mu}$ 以外 (ν_{μ} 消失モード)

 \mathcal{V}_{τ}

ニュートリノ振動パラメータ

T2K実験の目的

T2K実験のビームライン

T2K実験のニュートリノ検出器

データ取得

- 震災、ホーン用パルス電源故障など幾多の困難を克服。
- 6.57×10²⁰ POT (Proton On Target)のデータを取得。
 →T2K実験の目標統計の8%。
- 最高235kWでのビーム運転を達成。(設計値は750kW)

ニュートリノ振動の解析の流れ

INGRID, MUMONでの測定

- ニュートリノイベントレートは1%の範囲で安定。
- ニュートリノビーム方向は1mradよりずっと小さい範囲で安定しており、ミューオンビームの方向とよく一致している。

ND280での測定 (イベントの分類)

• 各ニュートリノ相互作用を高純度化した3サンプルに分類。

ND280での測定 (フィット)

- 各サンプルでのミューオンの運動量、角度分布をフィット。
- 規格化パラメータと誤差を導出。

ND280の測定による誤差の制限

Super-Kでの観測

Super-Kのv_µイベント選択 (Run1-3)

ν反応 (ND280で制限されないもの)	6.3	3%	
Super-K (+Super-Kでの相互作用)	10.	7%	
Total	25.1%	13.1%	

$$\left|\Delta m_{32}^2\right| = 2.4 \times 10^{-3} \text{eV}^2/\text{c}^2$$
, $\sin^2 2\theta_{23} = 1.0$ の場合

Number of decay-e

3

>5

2

0

v_u消失モードの測定 (Run1-3)

- Super-Kでのエネルギー分布を尤度比を用いてフィット。
- Run1-3のデータで世界最高レベルの精度で測定。 $sin^2 \theta_{ren} = 0.514 \pm 0.082$

$$\left|\Delta m_{32}^2\right| = 2.44^{+0.17}_{-0.15} \times 10^{-3} \text{eV}^2/\text{c}^2$$

Super-Kのv_eイベント選択(従来と同じ基準)

Super-Kのv_eイベント選択(改良したπ⁰除去)

- 再構成アルゴリズム
 - 従来: リングの発光パターンでフィット (POLfit)
 - 今回:様々な粒子を想定し、時間・電荷を予想して 複数の飛跡までフィット (fiTQun)
- イベント選択
 - 従来: 再構成したπ⁰質量のみでカット
 - 今回:再構成したπ⁰質量と尤度比を用いた2次元カット
- ν_e信号: -2%(従来とほぼ変わらず), π⁰ B.G.: -70%(除去率が4割アップ)

Photon

Conversions

(6)再構成した π^0 質量と尤度比を用いた2次元カット \rightarrow 28イベントが最終的な ν_e 候補

• ND280による制限により系統誤差が半分以下になる。

v。候補イベント数

 sin²2θ₁₃ = 0.1ではND280で制限されないニュートリノ反応の 不定性が主要な系統誤差の起源。

Super-Kでのv。候補イベント数に対する誤差

誤差の起源	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
	ND280制限前	ND280制限後	ND280制限前	ND280制限後
νフラックス×ν反応 (ND280測定)	21.8%	4.8%	26.0%	2.9%
ν反応 (ND280で制限されないもの)	7.1	1%	7.6	5%
Super-K (+Super-Kでの相互作用)	7.3	3%	3.5	5%
合計	24.4%	11.4%	27.5%	8.9%
合計(2012)	21.1%	13.3%	24.3%	9.8%

ve出現モードの振動解析

$\nu_{\mu} \rightarrow \nu_{e}$ 振動の有意度、 θ_{13} - δ_{CP} の信頼領域

20

θ₂₃, Δm²₃₂の不定性の影響

δ_{CP} への制限

- T2Kの結果を原子炉ニュートリノによる θ_{13} の測定 結果と組み合わせて初めて δ_{CP} への制限を与えた。
- $\delta_{CP} = -\pi/2$ が最も好まれる。
- 0.19π~0.80π (Normal hierarchy) -π~-0.97π, -0.04π~π (Inverted hierarchy) の領域を90%C.L.で棄却。 δ_{cp}
- ν_µ消失モードの測定結果 Turv がアップデートされれば、 より厳しい制限を与えられ ることが期待できる。
- v_e出現モードとv_µ消失モードを同時にフィットする3世代間同時解析も進行中。

家城 (京都大学)

今後の期待される精度 (vモード:100%の時)

23

- 今は統計誤差が支配的。→統計をためることが最も重要。
- 統計をためるにつれて、系統誤差抑制の重要性が増してくる。

 $|\Delta m_{32}^2| = 2.4 \times 10^{-3} \text{eV}^2/\text{c}^2$, $\sin^2 2\theta_{23} = 1.0$, $\sin^2 2\theta_{13} = 0.1$, normal hierarchyを仮定。

v」候補イベント数の系統誤差

フラックスとCCQE等からの誤差は反相関で大半がキャンセル。

ND280測定)

制限されないもの v反応 (ND280で

- Run1-3の結果ではSuper-Kの検出 効率由来の系統誤差が大きい。
- Run1-4の結果では減少する予定。
 - リング数の系統誤差を最新の大 いフラックス× v反応 気ニュートリノデータとMCをコン トロールサンプルとして再評価。
 - NCの粒子識別の系統誤差を正 • 確に評価。
- 実際の測定にはエネルギー分 布の誤差も大きく効いてくる。

+相互作用 Super-K

	誤差の起源	誤差
-	SK ν_{μ} CCQE (<0.4GeV)	0.2%
	SK ν_{μ} CCQE (0.4~1.1GeV)	1.0%
	SK ν_{μ} CCQE (>1.1GeV)	2.4%
	SK v_{μ} CCnonQE	7.8%
	SK ν _e CC	0.2%
	SK NC	6.4%

νμ候補イベント数の誤差の内訳 (ND280制限後, Run1-3の結果)

(18/14/
	誤差の起源	誤差
\int	フラックス	7.1%
	M_A^{QE} (GeV)	7.0%
	M ^{RES} (GeV)	4.4%
J	CCQE規格化 (<1.5GeV)	3.5%
	CCQE規格化 (1.5~3.5GeV)	3.0%
	CCQE規格化 (>3.5GeV)	1.0%
	CC1π規格化 (<2.5GeV)	2.9%
L	CC1π規格化 (>2.5GeV)	3.3%
\int	CC other shape	0.8%
	Spectral function	0.7%
	フェルミ運動量	0.1%
	CC coherent規格化	0.9%
))	NC1π [±] 規格化	0.9%
	NC other規格化	0.8%
	W shape	0.4%
	π less Δ -decay	6.2%
L	$\sigma_{\overline{\nu}}/\sigma_{\nu}$	2.4%

反相関

ve候補イベント数の系統誤差

- 原子核模型(フェルミ気体模型と Spectral functionの差)からの誤 差が最大。
- Spectral functionをMCに実装し、 誤差を正確に評価すれば劇的 に小さくなるはず。→ほぼ完了。

レレックス×2反応

ND280測定)

25

反相関

誤差

7.5%

3.1%

1.1%

6.2%

2.0%

0.4%

v。候補イベント数の誤差の内訳

(ND280制限後, $\sin^2 2\theta_{13} = 0.1$)

誤差の起源

(GeV)

フラックス

 M^{RES}_{A} (GeV)

CCQE規格化

CC1π規格化

NC1π⁰規格化

系統誤差抑制

フラックスの不定性はハドロン生成の不定性起因が支配的。
 → NA61のハドロン生成データのアップデート、これまでMCの 調整に用いていないもの(二次核子など)も用いることにより、 改善が見込まれる。

ニュートリノ相互作用の不定性は外部実験から評価してきた。
 → さらなる不定性の抑制のためにはT2K実験自身による、
 より高精度なニュートリノ相互作用の測定が求められる。

T2K実験でのニュートリノ反応断面積測定

27

まとめ

- T2K Run1-4の6.57×10²⁰POT(目標統計の8%)のデータを解析 した結果、v_e出現イベントの候補が28イベント見つかった。
- 電子の運動量と角度の2次元分布を用いた解析の結果、 $\delta_{CP} = 0, \sin^2 2\theta_{23} = 1.0$ のとき、 $\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$ (Normal hierarchy) $\sin^2 2\theta_{13} = 0.170^{+0.045}_{-0.037}$ (Inverted hierarchy) $\theta_{13} = 0$ を7.3 σ で棄却。 $\nu_{\mu} \rightarrow \nu_{e}$ 振動を発見。
- T2K実験の結果を原子炉ニュートリノの結果と組み合わせて、 初めて δ_{CP} への制限を与えた。
- v_u消失モードのRun1-4データの解析結果も近々公開予定。
- 系統誤差抑制のために様々な努力がされている。