T2K Muon Monitor

Kento Suzuki (Kyoto University) 2010.08.31 NBI Talk

Role and Requirement

- > Monitor v beam direction and intensity by measuring μ
 - Beam direction by measuring µ beam profile center
 - Requirement : < 0.25mrad
 - Intensity by measuring µ yield
 - Requirement : < 3%
- Required dynamic range
 - 1% to 100% (=0.75MW)
 - Estimated muon flux (profile center): ~8×10⁷ µ/cm²/spill at 0.75MW

← Typical profile of µ beam measured by MUMON

Role and Requirement

- Bunch by bunch measurement
 - Bottom fig.: structure of T2K beam
- Reliability
 - Beam operation will be stopped if MUMON has trouble
 - Need to work under high radiation environment
 - 100 kGy per year at 0.75MW operation

Location of T2K Muon Monitor

T2K Muon Monitor "MUMON"

- Composed of two independent detector → redundancy and wide-dynamic range
 - Si PIN Photodiode : high S/N ratio even when beam intensity is low.
 - Ionization chamber : radiation tolerant
- Each detector has 49 sensors (7×7) which are arranged at 25cm intervals in each array.
- Covered Area: 150cm×150cm

Photo

Hardware

Measures for High Radiation

- We prepared for high rad. situation by making components of MUMON radiation tolerant.
 - Ionization chamber (detail is in later slide):
 - Almost all parts are composed of aluminum.
 - PEEK (Poly-Ether-Ether-Ketone), ceramic or polyimide for insulator
 - Polyimide cable for electronics
 - Non-halogen polyethylene (PE) insulated cable and Ethylene-Propylene-Rubber (EPR) insulated cable for power supply cable.

Si PIN Photodiode

- Product of "Hamamatsu Photonics"
- Active size: 1cm×1cm
- Wide dynamic range
 - S/N ~200 (even at 1% intensity)
- Weak against radiation
 - Expected life time is ~1 month at 0.75MW operation.
 - Exchange is needed for full beam intensity
- Covered up by aluminum package
 - Can exchange quickly under radiation environment.
 - PEEK is used for mounting Si PIN
 Photodiode and being put on the package.

Ionization Chamber We referred NuMI Muon Monitor

- Active size: 7.5cm \times 7.5cm
- Gap: 3mm
- Radiation tolerant.
- → Gas (130kPa, 34°C)
 - $Ar + N_2 (2\%)$
 - For low intensity (<200kW)
 - Avoid saturation of signal due to recombination b/w electrons and ions.
 - He + N_2 (1%)
 - For high intensity (>200kW)
 - Lower ionization yield than that of Ar.
 - Purpose of N₂ contamination
 - To get fast response of signal.
 - In case of He, this effect is smaller than case of Ar.
 - To avoid signal fluctuation.
 - Two types of gas system to cover required dynamic range.
 - Confirmed linearity at 200V in beam test.

Left: $Ar + N_2(2\%)$

Right : $He + N_2(1\%)$

Control for gas and temperature for IC

- Keep appropriate conditions strictly
 - Temperature: 34℃
 - Monitored by Pt100 resistance thermometer.
 - Kept by PID-controlled heater.
 - The deviation is within ± 0.2 °C.
 - Pressure: 130kPa
 - Monitored by pressure transducers.
 - PID control of solenoid valve is located at most downstream of exhaust line.
 - This keeps the pressure at 130 \pm 0.1 kPa.
 - O_2 contamination <100ppm
 - Monitored by oxygen analyzer.
 - Absorption of drift electrons cause losses of signal.
 - More than 1% loss if O₂>100ppm
 - Gas flow ~ 100 cc/min
 - suppress O₂ increasing.
 - We already achieved around 5ppm during physics run.

Monitor these values in real time

Measurement

What do we detect ? Both are MC simulations

How to Achieve Direction and Intensity of µ Beam Analysis method is simple

Calibration System

- MUMON has two movable stand for calibration
- Si PIN Photodiode
 - There is a reference detector which can be moved w/ moving stand behind the silicon arrays.
 - All channels (49ch) can be calibrated by using this ref. detector
- Ionization Chamber
 - $\,\circ\,$ Can be moved by $\pm 25 cm$ w/ moving stand attached to IC itself.
 - Measure at 9 positions and get relative gain of each channel.
- Can relatively calibrate with precision of 0.1% for Si and 0.4% for IC.

Si PIN Photodiode

Ionization Chamber

Confirmed horn focusing by MUMON

- Top fig. : horn current vs collected charge at center channel
- Bottom fig. : profile of µ beam

Result of Measurement

Result of Measurement

How About Resolution?

- Estimation by using beam.
 - By comparing two independent detectors, fluctuation of beam direction, intensity and horn current is canceled.
 - Resolution
 - For Intensity measurement (left): 0.12%
 - For direction measurement (Right): 1.5mm

Summary

- T2K Muon Monitor "MUMON" measures v beam direction and intensity by measuring µ.
- MUMON has two independent detectors, Si PIN photodiode and Ionization chamber.
- During physics run, MUMON had been very stable and had good data taking.
- We are waiting for more beam.

Back Up

T2K Commissioning Run & Physics Run

Gas System

DAQ

COPPER-FINNESSE Flash ADC

- COPPER-FINNESSE:
 - Developed by KEK for Belle experiment
 - Mother board (COPPER) has ethernet ports as a external interface
 - Sub-board (FINNESSE) which is inserted to COPPER works as Flash ADC
- Sampling rate: 65MHz
- Accuracy: 12bit
- Input range: ±1V
- Shaping time: 52.8ns

- Trigger
 - We use timing of signal from CT as a trigger
 - CT also use COPPER-FINNESSE Flash ADC and its sampling rate is 160MHz
 - About CT, please hear Shibata-san's talk

Study for Understanding MUMON Performance

- Top fig. : profile width vs horn current
- Bottom fig. : proton position at target vs profile center
 - Parallel beam

Systematic Error for Direction Measurement

• For direction measurement

Error Source	Error Size
Detector Calibration	0.3 cm
Upstream Materials	~ 2.4 cm
Alignment	0.7 cm
Misalignment in target and horn	Under study
Total	2.5 + ? cm

(11.8 cm = 1 mrad)

P-θ distribution of Pion

Flux Measurement

Profile, Mar 10

Signal Waveform

Candidate of detector in near future

MCT

Diamond detector

Study is ongoing