# Search for Muon Neutrino Disappearance in a Short-Baseline Accelerator Neutrino Beam



Yasuhiro Nakajima (Kyoto Univ.), for the SciBooNE Collaboration

# Introduction

#### Neutrino Oscillation

- Neutrino flavour and mass eigenstates are mixed
- Neutrino change flavor as a function of time (distance traveled)

 $P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left( \frac{1.27\Delta m^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]} \right)$ 

#### Observed Oscillations

Confirmed in two parameter regions

- $\stackrel{>}{=}$  Atmospheric region ( $\Delta m^2 \sim 10^{-3} \, eV^2$ )
  - Super-K, K2K, MINOS, etc...
- Solar region ( $\Delta m^2 \sim 10^{-5} \text{ eV}^2$ )
  - SNO, Super-K, KamLAND, etc..

Oscillations in other parameter regions are prohibited by the current standard model with 3 generations of neutrinos.

An additional oscillation signal would indicate new physics.

Sterile neutrino, etc...

# Experimental Setup

# Fermilab Booster Neutrino Beam

- High intensity pure muon neutrino beam.
- $\bullet$ <E<sub>\(\nu\)</sub>> ~ 0.7 GeV





#### SciBooNE Target/Horn Decay region MiniBooNE **Detector** 440 m 100 m

SciBooNE (2007 - 2008)

#### SciBar:

- Fine segmented scintillator tracker (14K strips)
- Neutrino target (CH)
- Fiducial mass: 10 tons
- MRD (Muon Range Detector): Sandwich of steel and
- scintillator planes. Measure muon momentum

#### MiniBooNE (2002 - )

- ~ 1 k ton mineral oil Cherenkov detector.
- Main component: CH<sub>2</sub>





#### L ~ 500m, $E_{\nu}$ ~ 0.7GeV

Sensitive to oscillations at ~1 eV<sup>2</sup>

Common neutrino target (both carbon) and neutrino beam

Most of systematic errors cancel

# SciBooNE-MiniBooNE Joint $\nu_{\mu}$ Disappearance Analysis

## 1. SciBooNE Charged

## Current Event Selection

Signature: muon track Long track with MIP-like

- energy deposit.
- Originate from SciBar fiducial Volume
- Mall SciBar-contained, MRD-stopped and MRDpenetrated muons are used for wide energy coverage.
  - ~90% pure CC sample ✓ ~40K events
- CC event candidate  $\bigcirc$  Muon momentum ( $P_{\mu}$ )
- reconstructed from range:  $\bigcirc$  Muon angle ( $\theta \mu$ ):
- reconstructed from SciBar track information

# 2. SciBooNE Spectrum Fit

- Fit  $P_{\mu}$  vs  $\theta_{\mu}$  distributions.
- Fune neutrino spectrum and cross-section parameters ( $M_A$ ,  $\kappa$ )



0.4 (the errors include statistical and systematic uncertainties) 1.5



### 3. Expected MiniBooNE Distribution

- Extrapolate SciBooNE spectrum to MiniBooNE.
- $\mathbb{P}$  Propagate errors to MiniBooNE Recon. E $\nu$



to the level of MiniBooNE detector uncertainty.

#### Oscillation Sensitivity

- Search for oscillation signal assuming 2-flavor mixing.
- $\vdots$  Fit MiniBooNE Rec.  $E_{\nu}$  distribution.
  - Evaluate the significance using the Feldman-Cousins's method.

Achieved higher sensitivity than MiniBooNE-only oscillation search.

Final SciBooNE-MiniBooNE joint fit result will be released soon!

E<sub>v</sub> (GeV)



Anti-neutrino analysis ٠ is also ongoing!