

Development of the new T2K on-axis neutrino detector INGRID proton module

 \rightarrow graphite π'

target

Goals

0

Super-

295km

on-axis detector

ff-axis detector

)2~2.5°

First observation of $\nu_{\mu} \rightarrow \nu_{e}$ (\rightarrow measurement of θ_{13})

Not installed

Precise measurement of v_{μ} disappearance(θ_{23} , Δm_{23}^2)

neu

Tatsuya Kikawa (Kyoto University) for the T2K collaboration The T2K (Tokai to Kamioka) experiment

- Long-baseline (295km) neutrino oscillation experiment
- Generate v_{μ} beam at J-PARC in Tokai
- Detect the neutrinos with Super-K in Kamioka
- First application of off-axis beam

INGRID (Interactive Neutrino GRID)

- On-axis neutrino detector (14(+2) identical modules) to monitor the beam direction
- Sandwich structure of iron target and scintillator tracking planes
- High statistics because of large target mass (116 tons)

 \Im Unable to detect particles other than muon from neutrino interactions 10° m \square Beam

(i.e. protons & pions stop in iron layers) \rightarrow Unable to indentify neutrino interaction modes

1 pixel

 $50\mu m \times 50\mu m$

INGRID proton module

• New additional on-axis neutrino detector in front of the central INGRID module

Motivations

- Better understand neutrino interactions in INGRID by detecting particles such as hadrons and low-energy muons that INGRID is unable to detect
- \rightarrow Estimate signal & background in INGRID
- Measure on-axis neutrino energy spectrum via Charged Current Quasi-Elastic (CCQE) mode

(Identify neutrino interaction modes by protons & pions from neutrino interactions)

 \rightarrow Guarantee beam quality and beam MC

Requirement

• Reconstruct tracks of all kinds of charged particles from neutrino interactions

Design of INGRID proton module 34 scintillator tracking planes (without iron)

on-axis v beam

off-axis v beam

- One tracking plane consists of 32 scintillator bars
- Scintillator bars (10mmx50mmx1203m & 13mmx25mmx1203m) are lined up alternatively in horizontal and vertical planes
- Tracking planes are covered by 2 front veto planes and 4 side veto planes
- Fiber-MPPC(multi-pixel photon counter) readout
- Total channel: 1204, total mass: 1.4 t size: 1.4m x 1.4m x 0.9m

Secondary emission

Able to reconstruct 3D tracks of all kinds of charged particles from neutrino interaction

Charged particle Scintillator

Photon

MPPC **1**

Monte Carlo simulation

 $\underline{\textbf{Tool kit}}: Geant3 (\textit{neutrino beam}) \rightarrow NEUT (\textit{neutrino interaction}) \rightarrow Geant4 (\textit{detector simulation})$

<u>Result</u>

• Statistically sufficient number of events for reconstruction of neutrino energy spectrum

Expected number of neutrino interactions
in proton module with 750kW beam powerTotal 3.6×10^5 / yearCCQE mode 9.4×10^4 / year

Expected energy distribution of neutrinos which interact in proton module / year

Fiber