数式の書き方
\begin{equation}
y = ax
\label{eq:proportional}
\end{equation}
\begin{align}
(a + b)^2 &= (a + b) (a +b) \label{eq:a_plus_b_1}\\
&= a^2 + 2ab + b^2 \label{eq:a_plus_b_2}
\end{align}
\begin{gather}
A(x) = x \label{eq:x}\\
B(x) = x^2 \label{eq:x2}
\end{gather}
\begin{equation}
\begin{split}
a &= \int_0^\infty f(x)\sin x\cos x dx \\
&\quad - \int_0^\infty f(-x)\sin x\cos x dx
\end{split} \label{eq:int_plus_minus}
\end{equation}
\begin{multline}
a + b + c + d + e + f + g \\
+ h + i + j + k + l + m + n + o \\
+ p + q + r + s + t + u + v + w + x + y + z
\end{multline}
\begin{align}
\begin{split}
\Delta\theta_\mathrm{rad'} &= \arctan\left(\frac{\bm{a}_1 \cdot \hat{\bm{r'}}}{\bm{a}_1 \cdot \hat{\bm{t}}} \right) \\
&= \!\begin{multlined}[t]
\arctan\left( \left. \frac{-\tan\theta_{x0}\tan\theta_{x1} - \tan\theta_{y0}\tan\theta_{y1} + \tan^2\theta_{x0} + \tan^2\theta_{y0}}{\sqrt{\tan^2\theta_{x0} + \tan^2\theta_{y0} + (\tan^2\theta_{x0} + \tan^2\theta_{y0})^2}} \right. \right. \\
\hspace{0.3\textwidth} \left. \left. \middle/ \frac{\tan\theta_{x0}\tan\theta_{x1} + \tan\theta_{y0}\tan\theta_{y1} + 1}{\sqrt{\tan^2\theta_{x0} + \tan^2\theta_{y0} + 1}} \right. \right),
\end{multlined}
\end{split} \label{eq:mcs_radial_angle_difference} \\
\begin{split}
\Delta\theta_\mathrm{lat'} &= \arctan\left(\frac{\bm{a}_1 \cdot \hat{\bm{l'}}}{\bm{a}_1 \cdot \hat{\bm{t}}} \right) \\
&= \!\begin{multlined}[t]
\arctan\left(\left. \frac{-\tan\theta_{y0}\tan\theta_{x1} + \tan\theta_{x0}\tan\theta_{y1}}{\sqrt{\tan^2\theta_{x0} + \tan^2\theta_{y0}}} \right. \right. \\
\hspace{0.3\textwidth} \left. \left. \middle/ \frac{\tan\theta_{x0}\tan\theta_{x1} + \tan\theta_{y0}\tan\theta_{y1} + 1}{\sqrt{\tan^2\theta_{x0} + \tan^2\theta_{y0} + 1}} \right. \right).
\end{multlined}
\end{split} \label{eq:mcs_lateral_angle_difference}
\end{align}