オルソポジトロニウムにおける量子振動の測定

上路 市訓 仲村 佳悟

平成25年4月16日
目 次

第 1 章　Introduction 3

第 2 章　理論 4
 2.1 普遍振幅 4
 2.2 Spin Matrix 7
 2.3 Cross Section 10

第 3 章　セットアップ 13
 3.1 実験装置 13
 3.1.1 β 線およびγ 線検出部 13
 3.1.2 磁場 15
 3.1.3 装置まとめ 18
 3.2 物質中でのポジトロニウムの変化 18
 3.3 論理回路の概要 19
 3.4 時間とエネルギーの測定 22
 3.4.1 時間の測定 22
 3.4.2 エネルギーの測定 22

第 4 章　予備実験 25
 4.1 ^{23}Na の偏極率の測定 25
 4.1.1 原理 25
 4.1.2 プラスチックシンチレータのキャリプレーション 25
 4.1.3 結果 32
 4.2 オルソポジトロニウムの寿命測定 32
 4.2.1 Calibration 32
 4.2.2 データのカッティング 33
 4.2.3 t-Q 補正 35
 4.2.4 結果 40

第 5 章　本実験 41
 5.1 データ解析 41
 5.1.1 Fitting 41
第 6 章 考察

6.1 逆位相 45

6.2 磁場の非一様性 46
 6.2.1 振動の smearing 46
 6.2.2 HFS と崩壊率 48

第 7 章 反省 50

第 8 章 謝辞 52

付 録 A 53

A.1 SiO₂ の Stopping Power 53
 A.1.1 ターゲット 53

A.2 t-Q 補正の Cutting 54

付 録 B 58

B.1 シリカエアロゲルでのポジトロニウムの生成 58

付 録 C 60

C.1 測定器のエネルギー・時間分解能について 60
第1章 Introduction

現在、理論と実験の不一致が見られる例としてポジトロニウムの HyperFine-Splitting(HFS) がある[5]。これまでの実験では Radio Frequency(RF) をポジトロニウムに照射しエネルギー準位を測定することで HFS を測定していたが大強度で安定な RF が必要となってくる。しかし、磁場をかけた際の量子振動を測定することで光源を使うことなく HFS を間接的に測定できる[4]。今回の実験では、ポジトロニウムの量子振動の観測を目指した。
第2章 理論

2.1 普遍振幅
不変振幅を Feynmann rule に則って計算すると

\[iM = (4\pi)^3 \bar{v}(p_+) \left((-ie\gamma^\mu)\epsilon_\mu^*(k_3)G(k_3 - p_+)(-ie\gamma^\mu)\epsilon_\mu^*(k_2)G(p_- - k_1)(-ie\gamma^\lambda)\epsilon_\lambda^*(k_1) \right) u(p_-) \]
(2.1)

\(\epsilon \) は光子の偏極ベクトルで \(\epsilon = (0, e) \)、以後便宜上 \(\epsilon^* \) を \(\epsilon \) と書く。\(G(p) \) は電子、陽電子の伝搬関数である。非対称的極限を取ると

\[p_+ = p_- = p = (m, 0) \]
(2.2)

Green 関数は

\[G(k_3 - p_+) = \frac{i(k_3 - p)\gamma^\mu + m}{(k_3 - p)^2 - m^2} \]

\[= \frac{-k_3\gamma^4 + (k_30 - m)\gamma^0 + m}{k_3^2 + 2(p \cdot k_3) + p^2 - m^2} \]

\[= \frac{i(k_3\mu\gamma^\mu + m(1 - \gamma^0)}{2m\omega_3} \]
(2.3)

\[\bar{v}(p), u(p) \] は

\[u(p) = \sqrt{2m} \begin{pmatrix} \phi \\ 0 \end{pmatrix} \quad \bar{v}(p) = -\sqrt{2m} \begin{pmatrix} 0 \\ \psi^* \end{pmatrix} \]
(2.5)

ここで、\(\omega_3 = k_{30}, \phi, \psi \) は各々電子、陽電子の 2 成分スピノルである。ボジトロニウムのスピン状態の振幅の依存性を見たいので、スピンで平均を取ることが出来ない。そこで \(\gamma \) 行列を直接計算していく。遷移振幅は

\[M = (4\pi)^3 e^3 \bar{v}(p) \left(\tilde{\epsilon}_3 \frac{\hat{k}_3 + m(1 - \gamma^0)}{2m\omega_3} \tilde{\epsilon}_2 \frac{-\hat{k}_1 + m(1 + \gamma^0)}{2m\omega_1} \tilde{\epsilon}_1 \right) u(p_-) \]

\[= \frac{-(4\pi)^3 e^3}{2m\omega_1\omega_3} \begin{pmatrix} 0, \psi^* \end{pmatrix} \left(\tilde{\epsilon}_3(\hat{k}_3 + m(1 - \gamma^0))\tilde{\epsilon}_2(-\hat{k}_1 + m(1 + \gamma^0))\tilde{\epsilon}_1 \right) \begin{pmatrix} \phi \\ 0 \end{pmatrix} \]
(2.6)
ここで，\(\hat{e}_1 = \epsilon_\mu (k_1) \gamma^\mu \) とした。

\[
(1 + \gamma^0) \hat{e}_1 = \epsilon_\mu (1 + \gamma^0) \gamma^\mu = \begin{cases}
0 & (\text{for } \mu = 0) \\
\epsilon_1 \gamma^i (1 - \gamma^0) & (\text{for } \mu = 1, 2, 3)
\end{cases} = \epsilon_1 (1 - \gamma^0) = \hat{e}_1 \left(\begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right)
\]

(2.7)

同様に

\[
\hat{e}_3 (1 - \gamma^0) = (1 + \gamma^0) \hat{e}_3 = \left(\begin{array}{c} 2 \\ 0 \\ 0 \end{array} \right) \hat{e}_3
\]

(2.8)

なので

\[
M = \frac{-(4\pi)^2 \epsilon^3}{2m \omega_1 \omega_3} \left(0, \psi^* \right) \left(\hat{e}_3 \hat{k}_3 + m \left(\begin{array}{c} 2 \\ 0 \\ 0 \end{array} \right) \hat{e}_3 \right) \left(\hat{e}_2 (\hat{k}_1 \hat{e}_1 + m \hat{e}_1 \left(\begin{array}{c} 0 \\ 0 \\ 2 \end{array} \right)) \right) \left(\phi \right)
\]

\[
= \frac{-(4\pi)^2 \epsilon^3}{2m} \left(0, \psi^* \right) \left(\hat{e}_3 \hat{n}_3 \hat{e}_2 \hat{n}_1 \hat{e}_1 \right) \left(\phi \right)
\]

(2.9)

ここで \(n_i = k_i / \omega_i \) である。\(\epsilon \cdot n = 0 \) を用いて

\[
\hat{e}_3 \hat{n}_3 \hat{e}_2 \hat{n}_1 \hat{e}_1 = \epsilon_{3\mu} n_{3\nu} \epsilon_{2\rho} n_{1\sigma} \epsilon_{1\lambda} \gamma^\mu \gamma^\nu \gamma^\rho \gamma^\lambda
\]

\[
= \epsilon_{3\mu} n_{3\nu} \epsilon_{2\rho} n_{1\sigma} \epsilon_{1\lambda} \left(g^{\mu\nu} \gamma^\rho - g^{\mu\rho} \gamma^\nu + g^{\nu\rho} \gamma^\mu + i \gamma_5 \epsilon^{\rho\nu\sigma} \gamma_5 \gamma^\lambda \right)
\]

\[
= \epsilon_{3\mu} n_{3\nu} \epsilon_{2\rho} n_{1\sigma} \epsilon_{1\lambda} \left(g^{\mu\nu} \left(\gamma^\rho - g^{\rho\lambda} \gamma^\sigma + g^{\rho\sigma} \gamma^\lambda - i \gamma_5 \epsilon^{\rho\lambda\sigma} \gamma_5 \right) + g^{\nu\rho} \left(g^{\mu\lambda} \gamma^\sigma - g^{\mu\sigma} \gamma^\lambda + g^{\lambda\sigma} \gamma^\mu - i \gamma_5 \epsilon^{\mu\sigma\lambda} \gamma_5 \right) - i \gamma_5 \epsilon^{\rho\nu\sigma} \left(g_{\alpha} \gamma^\lambda - g_{\lambda} \gamma^\alpha + g^{\sigma\lambda} \gamma_5 - i \gamma_5 \epsilon_\sigma \gamma_5 \right) \right)
\]

\[
= - (\epsilon_3 \cdot \epsilon_2) \left(n_3 \cdot n_1 \hat{e}_1 - (n_3 \cdot e_1) \hat{n}_1 - i \gamma_5 \epsilon^{\mu\nu\lambda\beta} n_3 \epsilon_{1\lambda} \epsilon_{1\beta} \epsilon_{1\alpha} \right)
\]

\[
+ (n_3 \cdot \epsilon_2) \left((n_3 \cdot \epsilon_1) \hat{e}_1 - (n_3 \cdot \epsilon_1) \hat{n}_1 - i \gamma_5 \epsilon^{\mu\nu\lambda\beta} \epsilon_3 \epsilon_{1\lambda} \epsilon_{1\beta} \epsilon_{1\alpha} \right)
\]

\[
= \left(n_3 \cdot \epsilon_2 \right) (\epsilon_3 \cdot \epsilon_1) - (\epsilon_3 \cdot \epsilon_2) (n_3 \cdot n_1) \hat{e}_1
\]
ここで、
\[
\left(0, \psi^* \right) \gamma^0 \begin{pmatrix} \phi \\ 0 \end{pmatrix} = 0
\]
\[
\left(0, \psi^* \right) \gamma_5 \gamma^i \begin{pmatrix} \phi \\ 0 \end{pmatrix} = 0 \text{ for } (i = 1, 2, 3)
\]
より \(i\gamma_5\) かかる項は \(\beta = 0\) の項のみ残し最後の項は \(\beta = 1, 2, 3\) について計算すると
\[
\left(0, \psi^* \right) (\epsilon_3 \cdot \epsilon_2) i\gamma_5 \epsilon^{\mu\nu} \epsilon^\lambda \epsilon_{\beta} n_{3\nu} n_{1\sigma} \epsilon_{1\lambda} \gamma_\beta - (n_3 \cdot \epsilon_2) i\gamma_5 \epsilon^{\mu\nu} \epsilon^\lambda \epsilon_{\beta} n_{3\nu} n_{1\sigma} \epsilon_{1\lambda} \gamma_\beta
\]
\[
-i\gamma_5 \epsilon^{\mu\nu} \epsilon^\lambda \epsilon_{\beta} n_{3\nu} n_{2\rho} n_{1\sigma} \epsilon_{1\lambda} \gamma_\beta + i\gamma_5 \epsilon^{\mu\nu} \epsilon^\lambda \epsilon_{\beta} n_{3\nu} n_{2\rho} n_{1\sigma} \epsilon_{1\lambda} \gamma_\beta \begin{pmatrix} \phi \\ 0 \end{pmatrix}
\]
\[
= -i\psi(n_3 \cdot (1 \times n_1)) (\epsilon_3 \cdot \epsilon_2) - (n_3 \cdot \epsilon_2) (\epsilon_3 \cdot (1 \times n_1) - \epsilon_2 \cdot (1 \times n_3)) \phi
\]
\[
= -i\psi^*((\epsilon_3 \times n_3) ((\epsilon_1 \times n_1) \times \epsilon_2) - (\epsilon_2 \times \epsilon_3) \cdot \epsilon_1) \phi
\]
\[
- \left(0 \psi^* \right) \epsilon^{\mu\rho\sigma} \epsilon^\alpha \epsilon^\lambda \epsilon_{\beta} n_{3\nu} n_{2\rho} n_{1\sigma} \epsilon_{1\lambda} \gamma_\beta \begin{pmatrix} \phi \\ 0 \end{pmatrix}
\]
\[
= \psi^*((\epsilon_3 \times n_3) \cdot \epsilon_2 (\epsilon_1 \times n_1)_i + (\epsilon_1 \times (\epsilon_2 \times \epsilon_3) \cdot \epsilon_1) \gamma^i \phi
\]

以上より
\[
M = - \frac{e^3}{2m} \psi^* \left((n_3 \cdot \epsilon_2) (\epsilon_3 \cdot n_1) - (\epsilon_3 \cdot \epsilon_2) (n_3 \cdot n_1) \right) \hat{e}_{1i}
\]
\[
+ ((\epsilon_3 \cdot n_1) (n_3 \cdot \epsilon_1) - (n_3 \cdot \epsilon_2) (\epsilon_3 \cdot \epsilon_1)) \hat{n}_{1i}
\]
\[
((\epsilon_3 \times n_3) \cdot \epsilon_2 (\epsilon_1 \times n_1)_i + (\epsilon_1 \times (\epsilon_2 \times \epsilon_3)) \gamma^i)
\]
\[
- i((\epsilon_3 \times n_3) ((\epsilon_1 \times n_1) \times \epsilon_2) - (\epsilon_2 \times \epsilon_3) \cdot \epsilon_1) \phi
\]
(2.10)

ここで、他の diagram からの寄与は 123 のすべての組み合わせを考えればよく、頑張って計算すると\(^1\)普通振幅の和は
\[
M = - \frac{(4\pi)^2 e^3}{m} \psi^* \sigma_i u^{i*} \phi
\]
(2.11)

ただし \(u\) は
\[
u^i = u^i_1 + u^i_2 + u^i_3
\]
\[
u_1 = \epsilon_1 (\epsilon_2 \cdot \epsilon_3 - \epsilon'_2 \cdot \epsilon'_3) + \epsilon'_1 (\epsilon'_2 \cdot \epsilon_3 - \epsilon_2 \cdot \epsilon'_3)
\]
\[
\epsilon'_i = \epsilon_i \times n_1
\]

\(^1\)「頑張って計算すると」とは筆者たちが計算していない部分であるので、やる気のある読者は是非挑戦してもらいたい
u_2, u_3 と同様に定義する。また、u_1 などは次のようにも書くことが出来る。

\[
\begin{align*}
 u_1 &= \sqrt{2} \left((e_2^+ \cdot e_1^+) e_1^- + (e_2^- \cdot e_3^+) e_1^+ \right) \\
 e_k^\pm &= \frac{e_k \pm ie_k}{\sqrt{2}}
\end{align*}
\]

スピンの基底として

\[
\begin{align*}
 e_{\frac{1}{2}}^- &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} & e_{-\frac{1}{2}}^- &= \begin{pmatrix} 0 \\ 1 \end{pmatrix} & e_{\frac{1}{2}}^+ &= \begin{pmatrix} 0 \\ -i \end{pmatrix} & e_{-\frac{1}{2}}^+ &= \begin{pmatrix} i \\ 0 \end{pmatrix}
\end{align*}
\]

(2.12)

を取る。ポジトロニウムの各状態は

\[
\begin{align*}
 \chi_{11} &= e_{\frac{1}{2}}^+ e_{-\frac{1}{2}}^- \\
 \chi_{10} &= \frac{1}{\sqrt{2}} (e_{\frac{1}{2}}^+ e_{-\frac{1}{2}}^+ + e_{-\frac{1}{2}}^- e_{\frac{1}{2}}^-) \\
 \chi_{1-1} &= e_{-\frac{1}{2}}^+ e_{\frac{1}{2}}^- \\
 \chi_{00} &= \frac{1}{\sqrt{2}} (e_{\frac{1}{2}}^+ e_{-\frac{1}{2}}^- - e_{-\frac{1}{2}}^+ e_{\frac{1}{2}}^-)
\end{align*}
\]

(2.13) ～ (2.16)

と書けるので、それぞれの状態に対して振幅は

\[
\begin{align*}
 M_{11} &= \left(4\pi\right)^{\frac{3}{2}} e^3 \sqrt{2} i u_z^* \\
 M_{10} &= \left(4\pi\right)^{\frac{3}{2}} e^3 m (u_y^* - i u_z^*) \\
 M_{1-1} &= \left(4\pi\right)^{\frac{3}{2}} e^3 m (u_y^* + i u_z^*) \\
 M_{00} &= 0
\end{align*}
\]

(2.17) ～ (2.20)

となる。

2.2 Spin Matrix

磁場をかけると χ_{00} と χ_{10} で混合が起こる。磁場をかけた時の固有値は [9] ²

\[
\begin{align*}
 E_0 &= \frac{1}{2} (W_1 + W_0) - \frac{1}{2} (W_1 - W_0) (1 + x^2)^{\frac{3}{4}} \\
 E_1 &= \frac{1}{2} (W_1 + W_0) - \frac{1}{2} (W_1 - W_0) (1 + x^2)^{\frac{3}{4}} \\
 E_2 &= E_3 = W_1
\end{align*}
\]

(2.21) ～ (2.23)

W_0, W_1 はそれぞれパラボジトロニウム、オルソポジトロニウムのエネルギー、x は外部磁場の強さを表す。

²レポートでは Weisprof と書かれているが Weiskopf の間違いである。
固有状態は
\[\chi_0 = C_0^0 \chi_{00} + C_0^1 \chi_{10} \quad \chi_1 = C_1^0 \chi_{00} + C_1^1 \chi_{10} \quad \chi_2 = \chi_{11} \quad \chi_3 = \chi_{1-1} \] (2.24)
ここでCはそれぞれ
\[C_1^0 = -C_0^0 = \sqrt{\frac{1}{2} \left(1 - \frac{1}{\sqrt{1 + x^2}}\right)} \] (2.25)
\[C_1^1 = C_0^1 = \sqrt{\frac{1}{2} \left(1 + \frac{1}{\sqrt{1 + x^2}}\right)} \] (2.26)
である。磁場をかけた時の普遍振幅は前節の結果を用いて
\[M_0 = C_1^0 M_{10} \quad M_1 = C_1^1 M_{10} \quad M_2 = M_{11} \quad M_3 = M_{1-1} \] (2.27)
\[|M|^2 \] は、偏極密度行列 \(\rho_{mn}(t) \) を用いて \(m,n \) はスピンの状態
\[|M(t)|^2 = \sum_{m,n} M_m \rho_{mn}(t) M_n \] (2.28)
とかける。\(m \leftrightarrow n \) の選移、崩壊を考えて密度行列は
\[\rho_{mn}(t) = \rho_{mn}(0) \exp[-i(E_m - E_n)t - \frac{1}{2} (\gamma_m + \gamma_n)t] \] (2.29)
と書ける。\(\rho_{mn}(0) \) は初期状態の密度である。\(\gamma_m \) が各状態の崩壊率で
\[\gamma_0 = C_0^{02} \gamma_p + C_1^{02} \gamma_o \quad \gamma_1 = C_0^{12} \gamma_p + C_1^{12} \gamma_o \quad \gamma_2 = \gamma_3 = \gamma_o \]
\(\gamma_o, \gamma_p \) はそれぞれオルソポジトロニウム、パラポジトロニウムの崩壊率で \(\gamma_p = 8 \times 10^8 s^{-1}, \gamma_o = 7.14 \times 10^8 s^{-1} \) である。
初期状態は入射する陽電子と物質中の電子の状態から決まるので、
\[\rho_{mn}(0) = \langle \chi_m | \rho_+ \otimes \rho_- | \chi_n \rangle \] (2.30)
\(\rho_+ \) は入射する陽電子の密度 \(\rho_- \) は物質中の電子の密度である。物質中の電子は偏極していないとすると各々、以下のように書ける。
\[\langle e_{-\frac{1}{2}}^+ | \rho_+ | e_{-\frac{1}{2}}^+ \rangle = \frac{1}{2} (1 - P \cos \theta) \quad \langle e_{-\frac{1}{2}}^+ | \rho_+ | e_{\frac{1}{2}}^- \rangle = \frac{1}{2} (1 + P \cos \theta) \]
\[\langle e_{\frac{1}{2}}^+ | \rho_+ | e_{\frac{1}{2}}^- \rangle = \frac{1}{2} P \sin \theta \exp(-i\phi) \quad \langle e_{-\frac{1}{2}}^+ | \rho_+ | e_{\frac{1}{2}}^- \rangle = \frac{1}{2} P \sin \theta \exp(i\phi) \]
\[\langle e_{-\frac{1}{2}}^- | \rho_- | e_{-\frac{1}{2}}^- \rangle = \langle e_{-\frac{1}{2}}^- | \rho_- | e_{\frac{1}{2}}^- \rangle = \frac{1}{2} \]
\[\langle e_{-\frac{1}{2}}^- | \rho_- | e_{\frac{1}{2}}^- \rangle = \langle e_{\frac{1}{2}}^- | \rho_- | e_{\frac{1}{2}}^- \rangle = 0 \]
よって

\[
< \chi_0 | \rho_+ \otimes \rho_0 - | \chi_0 > = (C_{00}^0 < \chi_0 | + C_{01}^0 < \chi_0 |) \rho_+ \otimes \rho_0 - (C_{10}^0 | \chi_0 > + C_{11}^0 | \chi_0 >) \\
= C_{00}^{02} < \chi_0 | \rho_+ \otimes \rho_0 - | \chi_0 > + C_{01}^{00} < \chi_0 | \rho_0 \otimes \rho_+ - | \chi_0 > \\
+ C_{10}^{00} < \chi_0 | \rho_+ \otimes \rho_0 - | \chi_0 > + C_{12}^{00} < \chi_0 | \rho_+ \otimes \rho_0 - | \chi_0 > \\
= \frac{C_{00}^{02} + 2C_{00}^{0}C_{00}^{0} + C_{00}^{12}}{2} < e_{+}^{1/2}_{| \rho_+ | e_{+}^{1/2}_{|} > < e_{-}^{1/2}_{| \rho_+ | e_{-}^{1/2}_{|} > + \\
- \frac{C_{00}^{02} + C_{00}^{12}}{2} < e_{+}^{1/2}_{| \rho_+ | e_{+}^{1/2}_{|} > < e_{-}^{1/2}_{| \rho_+ | e_{-}^{1/2}_{|} > + \\
- \frac{C_{00}^{02} + C_{00}^{12}}{2} < e_{+}^{1/2}_{| \rho_+ | e_{+}^{1/2}_{|} > < e_{-}^{1/2}_{| \rho_+ | e_{-}^{1/2}_{|} > + \\
\frac{C_{00}^{02} - 2C_{00}^{0}C_{00}^{0} + C_{00}^{12}}{2} < e_{+}^{1/2}_{| \rho_+ | e_{+}^{1/2}_{|} > < e_{-}^{1/2}_{| \rho_+ | e_{-}^{1/2}_{|} > \\
= (1 + 2C_{00}^{0}C_{01}^{1}) \frac{1}{4} (1 - P \cos \theta) + (1 - 2C_{00}^{0}C_{00}^{0}) \frac{1}{4} (1 + P \cos \theta) \\
= \frac{1}{2} \frac{1}{2} (C_{00}^{0} C_{00}^{0} P \cos \theta)
\]

と各項に対して頑張って計算すると結局

\[
\rho_{mn}^{(0)} = \\
\begin{pmatrix}
\frac{1}{2}(1 + PC_{00}^{0}C_{00}^{0} \cos \theta) & \frac{1}{2}(C_{00}^{0}C_{00}^{0} + C_{01}^{0}C_{00}^{0}) \cos \theta & \frac{P}{2\sqrt{2}}(C_{00}^{0} - C_{00}^{0})e^{i\phi} \sin \theta & \frac{P}{2\sqrt{2}}(C_{00}^{0} + C_{00}^{0})e^{-i\phi} \sin \theta \\
\frac{1}{2}(C_{00}^{0}C_{01}^{0} + C_{01}^{0}C_{00}^{0}) \cos \theta & \frac{1}{2}(1 + PC_{00}^{0}C_{00}^{0} \cos \theta) & \frac{P}{2\sqrt{2}}(C_{00}^{0} - C_{00}^{0})e^{i\phi} \sin \theta & \frac{P}{2\sqrt{2}}(C_{00}^{0} + C_{00}^{0})e^{-i\phi} \sin \theta \\
\frac{P}{2\sqrt{2}}(C_{00}^{0} - C_{00}^{0})e^{-i\phi} \sin \theta & \frac{P}{2\sqrt{2}}(C_{00}^{0} + C_{00}^{0})e^{i\phi} \sin \theta & \frac{P^{2}}{4\sqrt{2}}(C_{01}^{0} + C_{10}^{0})e^{i\phi} \sin \theta & \frac{P^{2}}{4\sqrt{2}}(C_{10}^{0} + C_{01}^{0})e^{-i\phi} \sin \theta \\
\frac{P}{2\sqrt{2}}(C_{00}^{0} + C_{00}^{0})e^{i\phi} \sin \theta & \frac{P}{2\sqrt{2}}(C_{00}^{0} + C_{00}^{0})e^{-i\phi} \sin \theta & \frac{P^{2}}{4\sqrt{2}}(C_{01}^{0} + C_{10}^{0})e^{i\phi} \sin \theta & 0 \\
\end{pmatrix}
\]

を得る。頑張って計算すると

\[
| M_{ij} |^{2} = \frac{(4\pi)^{3} \delta}{22m^{2}} \\
\left(C_{12}^{02} (1 + PC_{00}^{0} \cos \theta) F_{zz} e^{-7t} + (F_{xx} + F_{yy}) e^{-7t} \\
+ 2C_{00}^{0}C_{1}^{0}(C_{00}^{0} + C_{01}^{0})P \cos \theta F_{zz} \cos(E_{1} - E_{0})t e^{-\frac{1}{2}(70+7t)} \\
+ 2C_{01}^{0}P \sin \theta(C_{00}^{0} + C_{02}^{0}) F_{zz} (W_{1} - E_{0}) t e^{-\frac{1}{2}(70+7t)} \\
+ 2C_{11}^{0}P \sin \theta(C_{11}^{0} + C_{12}^{0}) F_{zz} (W_{1} - E_{0}) t e^{-\frac{1}{2}(70+7t)} \right)
\]

(2.32)

(2.33)

ここで

\[
F_{ab} = \sum_{pol} u^{*} \cdot a \cdot b = 4[(a \cdot b - (a \cdot n_{1})(b \cdot n_{1})) (1 - n_{2} \cdot n_{3})^{2} + \\
(a \cdot b - (a \cdot n_{2})(b \cdot n_{2}) (1 - n_{3} \cdot n_{1})^{2} + (a \cdot b - (a \cdot n_{3})(b \cdot n_{3}) (1 - n_{1} \cdot n_{2})^{2}]
\]

\[
P_{1} = -F_{zx} \sin \phi + F_{zy} \cos \phi \quad P_{2} = F_{zx} \cos \phi + F_{zy} \sin \phi
\]
\[
\tan \phi_0 = C_1^0 P_1 / C_0^0 P_2 \quad \tan \phi_1 = -C_1^1 P_1 / C_0^1 P_2
\]

である。磁場が弱い時 \((x << 1)\) それぞれの振動数を見ていくと \(HFS = W_1 - W_0 \sim 10^{12} s^{-1} \) なので

\[
\Omega_1 \equiv E_1 - W_1 = \frac{1}{2}(W_1 - W_0)((1 + x^2)^{1/2} - 1) \quad (2.34)
\]

\[
\Omega_0 \equiv W_1 - E_1 = \frac{1}{2}(W_1 - W_0)((1 + x^2)^{1/2} + 1) \sim 10^{12} s^{-1} \quad (2.35)
\]

\[
\Omega_2 \equiv E_1 - E_0 = (W_1 - W_0)(1 + x^2)^{1/2} \sim 10^{12} s^{-1} \quad (2.36)
\]

よって、検出器の時間分解能 \((\sim 10^{-9} s)\) で平均を取ると \(\Omega_0, \Omega_2\) がある項は 0 になる。よって \(\frac{1}{\gamma} \gg T \gg \frac{1}{\Omega_2}\) では、\(x\) の 2 次まで取って

\[
C_1^0 = -C_0^1 \sim \frac{1}{2} x \quad (2.37)
\]

\[
C_0^0 = C_1^1 \sim 1 - \frac{1}{2} x^2 \quad (2.38)
\]

陽電子の入射ベクトルを \(x-z\) 平面に設定してあげると \(\phi = 0\) になるので

\[
|M(t)|^2 = \frac{(4\pi)^3 e^6}{2m^2} \left(\frac{x^2}{4} F_{zz} e^{-\gamma_1 t} + (1 - P x \cos \theta - \frac{x^2}{4}) F_{zz} e^{-\gamma_2 t} + (F_{xx} + F_{yy}) e^{-\gamma_2 t} \right)
\]

\[
+ 2P \sin \theta e^{-\gamma_2 t} \left[-\frac{x^2}{2} F_{xx} \cos \Omega_1 t + (1 - \frac{x^2}{4}) F_{xy} \sin \Omega_1 t \right] \quad (2.39)
\]

となる。

2.3 Cross Section

ポジトロニウムの 3\(\gamma\) 崩壊の散乱断面積は次のように与えられる [7]。

\[
d\sigma = \frac{|M(t)|^2}{(2\pi)^5 32 m^2 v^2} \delta(k_1 + k_2 + k_3) \delta(\omega_1 + \omega_2 + \omega_3 - 2m) \frac{d^3 k_1 d^3 k_2 d^3 k_3}{\omega_1 \omega_2 \omega_3} \quad (2.40)
\]

一つの光子 \((\omega_1)\) の全断面積は、すべての積分を実行して \((x\) の 2 次の項は略とす)

\[
\sigma = \frac{e^6 \Delta \Omega}{192 \pi^2 m^4 v} \left\{ (1 - x \cos \theta) I_{zz} e^{-\gamma_1 t} + (I_{xx} + I_{yy}) e^{-\gamma_2 t} \right.
\]

\[
+ 2P \sin \theta (x I_{xx} \cos \Omega_1 t + I_{xy} \sin \Omega_1 t) e^{-\gamma_2 t} \right\} \quad (2.41)
\]
\[I_{ab} = \int F_{ab}\delta^3(k_1 + k_2 + k_3)\delta(\omega_1 + \omega_2 + \omega_3 - 2m) \frac{d^3k_2d^3k_3\omega_1^2d\omega_1}{\omega_1\omega_2\omega_3} \] \hspace{1cm} (2.42)
\[\sigma \sim (1 + h \sin \Omega_1 t)e^{-\frac{1}{2}(\gamma_1 + \gamma_2)t} \]

を得る。ここから、3\(\gamma\)の寿命を測定すると寿命の指数関数が振動数\(\Omega_1\)で振動する。この振動数を測定すれば、2.34の式からHFSを計算することが出来る。
第3章 セットアップ

3.1 実験装置

実験装置の配置の模式図を図3.1および図3.2に示す。中心部にポジトロニウムを生成するシリカパウダー（SiO₂）と、真空を引くためのアクリルフランジがある。線源はアクリルフランジの下部に設置されており、線源から得たβ+線はアクリルフランジの下部に設けた入り口（約1 cm径の穴で、薄いマイラーでふさいだもの）からアクリルフランジの中に入り、ターゲットのシリカパウダーに到達する。シリカパウダーの容器としては一辺2 cmのアクリル立方体の箱を用意した。

図3.1: 上から見た実験装置の模式図。ネオジム磁石（NdFeB）は本実験のみ使用した（図）。

3.1.1 β線およびγ線検出部

光電子増倍管（以下PMT）は7本あり、内6本（緑）はNaI(Tl)用、1本（赤）はプラシン用である。NaI(Tl)付PMTは、装置調達の都合上、2つはマイナス電圧、4つはプラス電圧のPMTを使用している。PMTの印加電圧は、DAQの1サ

図3.2: 横から見た実験装置の模式図。
図 3.3: シリカパウダーの容器。

イクルの周期（約 2 ms）に合わせてそれぞれのシングルレートが 500 Hz くらいになるように調節した。

<table>
<thead>
<tr>
<th>No.</th>
<th>Alias</th>
<th>Code Name</th>
<th>PMT Type</th>
<th>Scintilator</th>
<th>HighVoltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ponta</td>
<td>H1161</td>
<td>NaI</td>
<td>-1690V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ZAKU</td>
<td>MS-06S</td>
<td>NaI</td>
<td>+1270V</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Z’Gok</td>
<td>MSM-07S</td>
<td>NaI</td>
<td>+1420V</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>β</td>
<td>H1161</td>
<td>NaI</td>
<td>-1720V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gelgoog</td>
<td>MS-14S</td>
<td>NaI</td>
<td>+1500V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Zeong</td>
<td>NSN-02</td>
<td>NaI</td>
<td>+1450V</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Manager</td>
<td>H1161</td>
<td>Plastic</td>
<td>-2000V</td>
<td></td>
</tr>
</tbody>
</table>

ポジトロニウムの崩壊の観測においては、プラシンで ^{22}Na の β^+ 線を検出し、NaI(Tl) でポジトロニウム崩壊に伴う γ 線を検出する。NaI(Tl) はすべて 2 本ずつ向かい合わせの配置になっており、ポジトロニウムの 2γ 崩壊（主に p-Ps 由来）の back-to-back イベントをオフラインで判別できるようになっている。また、後述する pick-off 反応によるイベントも back-to-back のイベントとなるので、それらも取り除くことができる（3.2 節参照）。

また、理論によると modulation depth（崩壊の指数曲線に対する振動の大きさ）
は次のように与えられる（式 (2.50))。

\[h = 0.213P |\sin \theta \sin 2\beta \sin \alpha| \] (3.1)

ここで、\(\theta \) は磁场に対する偏極の方向、\(\alpha \) および \(\beta \) は磁场の方向を \(z \) 軸にとりた場合の \(\gamma \) 線の飛び方向の方位角と極角である。\(h \) が最大なのは \(|\sin \theta| = 1, |\sin 2\beta \sin \alpha| = 1 \) となるように偏極の方向を検出器の方向をセットしたとき、すなわち

\[\theta = \frac{\pi}{2}, \beta = \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \alpha = \pm \frac{\pi}{2} \] (3.2)

となるようにセッティングするときである。図 3.1 の NaI(Tl) はこの角度を満たす配置に、PMT1,4 と PMT3,6 を配置してある。これらの検出器では、互いに逆位相の振動が観測されるはずである（式 () 参照）。2.5 は磁场と垂直な成分は \(\beta = \frac{\pi}{2}, \frac{3\pi}{2} \) であり \(h=0 \) なので振動は起こらない。よってそれぞれの検出器のペアで観測できるヒストグラムは図 3.5 のようになるはずである。

図 3.4: modulation depth

3.1.2 磁場

振動数は以下のように与えられる。

\[\Omega_1 = \frac{HFS}{2}(\sqrt{1+x^2} - 1) \quad (x = 0.275 \ast H(T)) \] (3.3)
図 3.5: Osciration

振動数が高すぎるとTDCのResolutionによって見えなくなってしまい、振動数が低すぎると寿命のDecayを超えてしまう。TDCのResolutionが〜1ns、寿命が〜142ns(decay late〜0.00714(ns⁻¹))なのでHFS〜204(GHz)とすると

$$H \sim \frac{1}{0.725}\sqrt{(1 + \frac{2 \times 0.00714}{\text{HFS}})^2 + 1} \sim 50(mT)$$

$$H \sim \frac{1}{0.725}\sqrt{(1 + \frac{2 \times 1}{\text{HFS}})^2 + 1} \sim 190(mT)$$

より実験的に振動を見ることが出来る範囲の範囲は

$$50(mT) < H < 190(mT)$$ (3.4)

となり、2今回の実験では50φ×5tのネオジム磁石を用いた。中心付近で上の磁場の範囲に収まるような磁石同士の距離をシュミレーションソフト（FEMM）を使って見つかった。5cmでのシュミレーションの結果は以下のようなになった。

ここから磁石距離5cmだと上の範囲の強さになるのが予想される3。

磁場の測定は次の図の各点で2回ずつ測定した。

2xは4[HFS]と与えられるのでxもHFSによるためここではあくまでも目安として用いている。
3磁石の距離を変えずに実験を行ったが時間の都合上5cmのみしか測定できなかった。
図 3.6: 磁石による磁場のシミュレーション。

図 3.7: 中心 2cm 付近の磁場の強さ（シミュレーション）。左が磁石に垂直な方向で、右が磁石に平行な方向

図 3.8: 磁場の測定点：縦
図 3.9: 磁場の測定点：横
ここからそれぞれの測定点の平均を平均することで、磁場の強さとして

\[61.6 \pm 4.5 (mT) \]

を測定値として採用した。

3.1.3 装置まとめ

表3.2に実験装置の一覧を載せる。

<table>
<thead>
<tr>
<th>function of devices</th>
<th>name of devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-ray detector</td>
<td>NaI(Tl)×6</td>
</tr>
<tr>
<td>β-ray detector</td>
<td>plastic scintillator×1</td>
</tr>
<tr>
<td>target</td>
<td>SiO₂ powder</td>
</tr>
<tr>
<td>source of magnetic field</td>
<td>NdFeB magnet×2</td>
</tr>
<tr>
<td>vacuum environment</td>
<td>acrylic tube (few Pa)</td>
</tr>
</tbody>
</table>

3.2 物質中でのポジトロニウムの変化

ポジトロニウムはSiO₂等に陽電子を入射することで生成される。しかし、ポジトロニウムは物質と次のような反応を起こすことが知られている[?].

pick-off 消滅: ポジトロニウムが物質に衝突した際に、物質の電子とポジトロニウムの陽電子が対消滅してしまう反応.
spin 交換反応: 不対電子をもつ物質とポジトロニウムがスピンを交換して, p-Ps → o-Ps あるいは o-Ps → p-Ps になる反応.

化学反応: ポジトロニウムが水素原子のように酸化反応を起こしたりする反応。

比較的寿命の長い 3γ 崩壊を測定する際に pick-off によるイベント消失を防ぐため, 密度の小さい物質（シリカバウダー, シリカエアロゲル）でないといけない。今回はシリカバウダーを用いて実験を行った (AppendixB 参照)。また, スピン交換反応の原因となる不対電子を持つ水, 空気を減らすためにオープンで加熱して SiO₂ 中の水分を飛ばし, 真空を引きながら実験を行った。今回は, 真空と同時に磁石の固定も兼ねてアクリルフランジを作成した（図 3.10）。

図 3.10: アクリルフランジの外観

3.3 論理回路の概要

図 3.11 に回路の構成図を示す。^{22}Na の崩壊で生成した陽電子は, プラスチックシンチレータ（以下 P.S.）を通過し, シリカバウダーでポジトロニウムを生成後 γ 線に崩壊する。崩壊できたγ 線は 6 つの NaI(Tl) シンチレータで補足される。このときの, 論理回路上での各信号の動きを説明する。

P.S. に接続された PMT からの信号は, Discriminator によって論理信号に変換された後, Gate Generator に送られる。ここで, 1 µs のゲートを開き, NaI(Tl) からの信号を待つ。Coincidence モジュールの出力は TDC の start および ADC 用の
Gate Generatorに繋がっていて、P.S.とNaI(Tl)からの信号がCoincidenceをとったときのみTDCのstart信号やADCのgate信号が出力されるようになっている。

ところで、「NaI(Tl)からの信号」と書いたが、回路の構成図にもあるようにNaI(Tl)からの信号はFan I/Oでまとめられるため、正確には、「NaI(Tl)からの信号のうち最も早い信号」ということになる。しかしながら、今回の実験では、複数個のNaI(Tl)が反応したデータはすべて棄却するという方針をとるため、解析に用いるデータでは、ある一つのNaI(Tl)からの信号とFan I/Oの信号は同一のものである。

ポジトロニウムの寿命はNaI(Tl)の信号の到達時刻からP.S.の信号の到達時刻を引き算したまでは求めることができる。これを実現する一番簡単な方法は、P.S.からの信号をTDCのstartに入れて、NaI(Tl)からの信号をstopとする方法である。今回この方法を採用しなかったのは、NaI(Tl)に信号が来なかった場合の、無駄なデータの蓄積を抑えるためである。

Coincidence信号をTDCのcommon startに用いたので、TDCのstopにはそれぞれの信号を遅延させたものを使用する。TDCのstartはCoincidenceトリガーのNaI(Tl)からの信号で決まる。したがって、P.S.からの信号に対する遅延時間は、最も遅いCoincidence信号が来るタイミングよりも長くする必要がある。本実験の場合は、P.S.からの信号によるゲート信号の長さ1μsがそれにあたるが、start信号とstop信号がほぼ同時にくると、通常のTDCでは時間測定できないので、少し余裕を持たせて、1120nsに設定している。一方、TDC startがNaI(Tl)からの信号のうち、最も早いものによって決まるため、各NaI(Tl)の遅延時間は、TDC
が測定可能になる時間より長ければよいということになる。

図 3.12: TDC に入力される信号の時間的関係。

図 3.12 に TDC に入力される信号のタイミングの概略を示す。NaI(Tl) からの信号で TDC をスタートし、P.S. の信号で TDC をストップするため、測定される時間は、実際の崩壊時間に対応するもので反対になる。すなわち、崩壊が早ければ早いほど TDC の値は大きくなり、遅ければ遅いほど TDC の値は小さくなる。この反転状態は解析時に修正する（「4.2.3.TQ 補正」参照）。

粒子の崩壊は確率過程であるため、あるひとつの崩壊イベントが起こった直後に次の崩壊過程が生じることも起こりうる。ところが、CAMAC モジュール（特に ADC）には取得したデータをコンピュータに書き取るデータに変換するために少ながらず時間がかかる。変換時間中は次のイベントを処理できないため、CAMAC モジュールへの信号の出力を抑制せねばならない、そのために用いるのが veto である。

図 3.11 には 2 つの veto 信号線が存在する。まず、Coincidence の出力から Gate&Delay Gen. を通して Discriminator に入力される veto1 は、DAQ が発生した場合にそれ以降のイベントの入力を抑制するためのもので、ADC の変換時間（百数十 μs）などを考慮して 1 ms に設定されている。この信号が Discriminator に入力されるのにかかる時間は、NIM モジュールの内部での遅延などの影響で早くても 100 ns 程度かかってしまう。この遅延時間の間に Discriminator への信号が再び入力されることがあっても、DAQ がスタートしてしまうようにするのが veto2 である。veto2 は P.S. の信号を Gate Gen. のセルフ veto で抑制するもので、これによって DAQ のスタート信号（Coincidence の出力）が発生しないようにしている。Gate Gen. の内部遅延は 20 ns 程度なので、この時間の間は veto が有効にならないが、Discriminator の出力波の width が 20 ns 程度であるので十分である。図 3.13 に各 veto 信号と関係する信号のタイミング図を示す。
3.4 時間とエネルギーの測定

3.4.1 時間の測定

時間の測定にはCAMAC規格のTDC（Time to Digital Converter）を使用した。TDCのstart信号としては前節で述べたように、P.S.（プラスチックシンチレータ）とNaI(Tl)の信号のCoincidence出力を使用している。図3.11にもあるように、TDCには計7つのstop信号が入力されており、このうちの1つP.S.からDelayを通って入力される信号は、ポジトロニウムの崩壊時間を反転したものを測定することになる。残りの6つのstop信号は各NaI(Tl)からの信号を一定時間遅延させて入力している（前節图3.12参照）。図3.14にそれぞれの測定結果の例を示す。

3.4.2 エネルギーの測定

エネルギーの測定にはCAMAC規格のADC（Analog to Digital Converter）を使用した。ADCのgate信号は図3.11にあるように、Coincidence信号の出力をGate Gen.に入れ、2μsのgateを開いた。そのgate信号に入るように各NaI(Tl)の信号を遅延させてADCに入力する。エネルギーの測定はNaI(Tl)のみ行っている。図3.15にエネルギースペクトルの測定結果の例を示す。
図 3.14: TDC で測定した時間分布。左はプラスチックシンチレータ、右は NaI(Tl)からの信号を入力したもの。
Energy Spectrum of NaI(Tl)

 Entries 2.872462e+007
 Mean 186.4
 RMS 275.9

Energy Spectrum of NaI(Tl)

Entries 2.872462e+007
Mean 186.4
RMS 275.9

3.15: ADC

700 ADC channel 511 keV γ 線の光電ピークである。また、1900 ADC channel のあたりに 22Na から出る 1275 keV γ 線の光電ピークも見える。
第4章 予備実験

本実験前に2つの予備実験を行った。

4.1 ^{22}Naの偏極率の測定

この実験ではmodulation depthが偏極率に比例するため、振動を見るためには偏極率が重要になる。そこで、我々の使用出来るβ^+線源^{22}Naがどのくらいの偏極率を持っているのか調べるために以下のような実験を行った。

4.1.1 原理

[6]によると偏極率は以下の式で与えられる。

$$P = \frac{v}{c} = \frac{pc}{E} \tag{4.1}$$

ここでpは運動量、$E = K + m$は全エネルギーである。β^+のエネルギースペクトルから平均の運動エネルギーを求めることができ、その値をKとし電子の質量をmとすると、

$$E = K + m \quad pc = \sqrt{E^2 - m^2} \rightarrow P = \frac{\sqrt{E^2 - m^2}}{E} \tag{4.2}$$

より偏極率を求めることができる。

^{22}Naのβ^+線のエネルギーの測定にはプラスチックシンチレータを用いた。プラスチックシンチレータを用いる利点は、NaI(Tl)と違い密閉する必要がなく、β線を直接シンチレータにあてることができる点である（図4.1参照）。

4.1.2 プラスチックシンチレータのキャリプレーション

プラスチックシンチレータでβ^+のスペクトルを測定するのだが、プラスチックシンチレータではNaIのように線源の光電ピークでキャリプレーションすることが出来ないため、以下のようにしてキャリプレーションを行った。
図 4.1: NaI(Tl) とプラスチックシンチレータの違い。NaI(Tl) は潮解性があるので容器に入れてあるが、低エネルギーの β 線はこの容器で止められてしまい、NaI(Tl) まで届かない。一方、プラスチックシンチレータは裸のまま γ 線にあてることができる。

プラスチックシンチレータにエネルギー ω の γ 線が入ると、シンチレータ内の電子と Compton 散乱を起こし θ 方向に散乱される。散乱後の γ 線のエネルギー ω′ は

\[
\frac{1}{\omega'} = \frac{1}{\omega} + \frac{1}{m}(1 - \cos \theta)
\]

で与えられる。エネルギーの変化量 Δω = ω′ − ω は散乱電子のエネルギーとなり、その電子がプラスチックシンチレータを光させる。γ 線のエネルギーはわかる（今回用いたのは 137Cs の γ 線 662 keV）ので、散乱された γ 線のエネルギー ω′ を測定すればエネルギー保存からプラスチックシンチレータで落としたエネルギー Δω がわかる。それを色々な角度で測ってやればキャリプレーションすることが出来る。

まず、Checking Source の γ 線による NaI のキャリプレーションを行った。使用した線源は以下の通りである。これらの線源の光電ピークの Channel 数をそれぞれ

<table>
<thead>
<tr>
<th>name of sources</th>
<th>energy of γ-ray(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22Na</td>
<td>511 keV, 1275 keV</td>
</tr>
<tr>
<td>137Cs</td>
<td>662 keV</td>
</tr>
<tr>
<td>60Co</td>
<td>1173 keV, 1332 keV</td>
</tr>
</tbody>
</table>
図 4.2: Compton 散乱を用いたプラスチックシンチレータのキャリプレーション。

y[ADChannel] = a_0 + a_1 \times x[keV]

とエネルギーと ADC の channel 数が線形として Fitting した結果

\[a_0 = 108 \pm 4 \quad a_1 = 2.04 \pm 0.03 \quad \chi^2/\text{NDF} = 0.48/4 = 0.12 \quad (4.5) \]

となった。

NaI calibration

図 4.3: NaI Calibration

NaI(Tl) でエネルギーを測定する準備が整ったので、プラスチックシンチレータ
のキャリプレーションを行うことができる。図 4.4 にキャリプレーションに用いた
論理回路の概略図を、図 4.5 に検出部の外観を示す。線源は^{137}Cs を用いた。
図 4.4: 論理回路
図 4.5: 装置の写真

図 4.6 に NaI(Tl) とプラスチックシンチレータで測定されたエネルギーの相関図を示す。プラスチックシンチレータで Compton 散乱し、NaI(Tl) でプラスチックシンチレータで光電吸収されるγ線を考えてみると、プラスチックシンチレータで測定されたエネルギー E_{ps} と NaI(Tl) で測定されたエネルギー E_{NaI} の和は、^{137}Cs の出るγ線のエネルギーに等しい。

$$E_{NaI} + E_{ps} = 662[\text{keV}] \quad (4.6)$$

ここで、E_{NaI} は NaI(Tl) で測定されたエネルギー、E_{ps} はプラスチックシンチレータで測定されたエネルギーである。これは、相関図上で直線として表れ、図中の赤丸印のあたりがそれに該当する。

図 4.6: NaI(Tl) のエネルギー（縦軸）とプラスチックシンチレータのエネルギー（横軸）の相関図（NaI(Tl) とプラスチックシンチレータのなす角が 45° の場合）.

赤丸印の領域がキャリブレーションに使用する部分になる。

28
図 4.7: 二本の直線で切りられた後のエネルギー相関図。

キャリブレーションの手順は次のようになる。

1. 式 4.6 が示すように、図 4.6 の赤丸印の領域はある直線上に乗っている：

$$E_{NaI}[keV] = a_0 + a_1 \times E'_{ps}[ADC\ channel] \quad (4.7)$$

ただし、$$a_0$$ および $$a_1$$ は定数であり、$$E'_{ps}$$ は keV ではなく ADC の channel 数で測ったエネルギーである。$$a_0$$ は測定された全エネルギーを表すので、まずここを 662 keV に固定し、直線の傾き $$a_1$$ を定める。次に、$$a_1$$ を固定したまま、検出器のエネルギー分解能による領域の広がりが収まるように $$a_0$$ の下限と上限を探す。この二本の直線で囲まれた領域のみをキャリブレーションに使用すればよい。カット後の相関図を図 4.7 に示す。

2. カット前とカット後の各シンチレータで測定されたエネルギースペクトラムをそれぞれ図 4.8 と図 4.9 に示す。カット後のスペクトラムは、それぞれ単一のエネルギー分布に近いものになっている。

3. カットしたエネルギースペクトラムをガウス分布でフィッティングする。表 4.2 はフィッティングの結果である。この表には 2 つの $$\Delta \omega$$ が載っているが、左側は $$\gamma$$ 線源のエネルギーから NaI(Tl) のフィッティングの結果（表の $$\omega'$$）を引いたものであり、右側はプラスチックシンチレータのフィッティング結果である。

4. 2 つの対応する $$\Delta \omega$$ の値をグラフにプロットし、直線 4.4 でフィットした結果

$$a_0 = 140 \pm 9 \quad a_1 = 0.9 \pm 0.1 \quad \chi^2/NDF = 0.011/3 = 0.004 \quad (4.8)$$

となった（図 4.10）。
Entries 40150
Mean 288.7
RMS 158.6
Energy [keV]

Energy Spectrum @ 45deg. (NaI)

Entries 9649
Mean 476.6
RMS 58.36
Energy [keV]

Energy Spectrum @ 45deg. (P.S.)

4.8: ΧοτʢࠨɿNaIɿӈɿϓϥενοΫγϯνϨʔλʣ

4.9: ΧοτޙʢࠨɿNaIɿӈɿϓϥενοΫγϯνϪʔλʣ

<table>
<thead>
<tr>
<th>Data</th>
<th>ω [keV]</th>
<th>$\Delta \omega$ [keV]</th>
<th>$\Delta \omega$ [ADC Channel]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedestal</td>
<td>N/A</td>
<td>0</td>
<td>140.8 ± 9.016</td>
</tr>
<tr>
<td>35°</td>
<td>561.7 ± 49</td>
<td>100.0 ± 49</td>
<td>224 ± 59</td>
</tr>
<tr>
<td>45°</td>
<td>482.2 ± 44.7</td>
<td>179.5 ± 44.7</td>
<td>297 ± 53</td>
</tr>
<tr>
<td>60°</td>
<td>436.1 ± 41.3</td>
<td>225.6 ± 41.3</td>
<td>340 ± 53</td>
</tr>
<tr>
<td>90°</td>
<td>297.3 ± 26.4</td>
<td>364.4 ± 26.4</td>
<td>466.9 ± 42.5</td>
</tr>
</tbody>
</table>
図 4.10: プラスチックシンチレータのキャリブレーション。

図 4.11: 22Na の β^+ 線エネルギースペクトラム
4.1.3 結果

図4.11に\(^{22}\text{Na}\)の\(\beta^+\)のスペクトルを示す。ここから平均の運動エネルギー\(K\)を求めると,

\[
K = 179.4 \pm 0.6[\text{keV}]
\]
となった。これに電子の質量511 keVを足すと平均の全エネルギーは\(E = 690.4\pm0.6\)となる。これを、式4.2に代入すると、

\[
P = 67.24 \pm 0.07
\] \(\text{(4.9)}\)
を得た。これが、\(^{22}\text{Na}\)の\(\beta^+\)線の平均偏極率である。

4.2 オルソポジトロニウムの寿命測定

実際どれだけの\(\alpha\)-Psが観測できるのかを調べるために\(\alpha\)-Psの寿命を測定した。磁場をかけなければ\(\alpha\)-Psと\(p\)-Psで混合が起きないので、3\(\gamma\) 崩壊のeventの崩壊時間が\(\alpha\)-Psの寿命曲線を与える。実験装置は本実験と同じセットアップで行ったので、この節でその説明も行う。

4.2.1 Calibration

ADC

偏極率の予備実験と同様、ADCのキャリプレーションには\(^{22}\text{Na}\), \(^{137}\text{Cs}\), \(^{60}\text{Co}\)を用いた（表4.1参照）。フィッティング関数は式(4.4)である。なお、表中のNo.は図3.1における番号に対応している。

<table>
<thead>
<tr>
<th>No.</th>
<th>Alias</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(\chi^2/\text{NDF})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ponta</td>
<td>90.1 ± 0.8</td>
<td>2.20 ± 0.03</td>
<td>0.186/4 = 0.0460</td>
</tr>
<tr>
<td>2</td>
<td>ZAKU</td>
<td>31 ± 2</td>
<td>5.5 ± 0.1</td>
<td>1.4/1 = 1.4</td>
</tr>
<tr>
<td>3</td>
<td>Z’Gok</td>
<td>165.0 ± 1.0</td>
<td>2.87 ± 0.03</td>
<td>10.6/4 = 2.65</td>
</tr>
<tr>
<td>4</td>
<td>(\beta)</td>
<td>45.0 ± 0.9</td>
<td>2.38 ± 0.04</td>
<td>0.270/4 = 0.0675</td>
</tr>
<tr>
<td>5</td>
<td>Gelgoog</td>
<td>122.3 ± 1.0</td>
<td>2.17 ± 0.02</td>
<td>13.4/4 = 3.36</td>
</tr>
<tr>
<td>6</td>
<td>Zeong</td>
<td>67.8 ± 1.0</td>
<td>2.13 ± 0.02</td>
<td>15.1/4 = 3.78</td>
</tr>
</tbody>
</table>

32
TDC

Clock Genelator で start 信号を作り, Fixed Delay で遅らせた信号を stop 信号に入れ, Calibration を行った. delay の長さを変えて (32 ns から 400 ns まで), ADC 同様式 (4.4) でフィッティングした.

表 4.3: TDC caribration(range: 1 μs)

<table>
<thead>
<tr>
<th>No.</th>
<th>Alias</th>
<th>a_0</th>
<th>a_1</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ponta</td>
<td>-79.3 ± 0.3</td>
<td>3.833 ± 0.001</td>
<td>$15.60/8 = 1.950$</td>
</tr>
<tr>
<td>2</td>
<td>ZAKU</td>
<td>-148.7 ± 0.4</td>
<td>4.028 ± 0.002</td>
<td>$26.98/6 = 4.497$</td>
</tr>
<tr>
<td>3</td>
<td>Z’Gok</td>
<td>-145.1 ± 0.3</td>
<td>3.909 ± 0.001</td>
<td>$12.75/7 = 1.821$</td>
</tr>
<tr>
<td>4</td>
<td>β</td>
<td>-76.3 ± 0.3</td>
<td>4.016 ± 0.001</td>
<td>$8.550/8 = 1.069$</td>
</tr>
<tr>
<td>5</td>
<td>Gelgoog</td>
<td>-140.5 ± 0.4</td>
<td>4.009 ± 0.002</td>
<td>$33.89/7 = 3.841$</td>
</tr>
<tr>
<td>6</td>
<td>Zeong</td>
<td>-68.2 ± 0.3</td>
<td>3.869 ± 0.001</td>
<td>$6.090/8 = 0.7612$</td>
</tr>
<tr>
<td>M</td>
<td>Manager</td>
<td>-75.7 ± 0.3</td>
<td>3.798 ± 0.001</td>
<td>$67.42/8 = 8.428$</td>
</tr>
</tbody>
</table>

4.2.2 データのカッティング
データのカッティングの方針

今回の実験はポジトロニウムの3γ 崩壊の光子の放出角振動を観測することを目的としている。その柱となるのは、式 (2.50) や式 (2.52) であるが、これらで導出するために用いた仮定のひとつとして、観測する光子は 3 つの内の中 1 つだけであるというものである。すなわち,

NaI(Tl) が 2 つ以上反応したイベント (2γ 崩壊、3γ 崩壊問わず) はすべて棄却することとする。これにより、振動の周期だけではなく、modulation depth（式 (2.50)）の理論値との比較も行うことができる1.

寿命測定のデータの取り扱いも、同じ方針をとることとする。

ADC Cut

p-Ps は back-to-back に 2γ に崩壊しγ のエネルギーは 511 keV である。o-Ps は 3γ にエネルギー 511 keV 以下で崩壊するので、上限は 2γ 崩壊の光電ピーク（～ 511 keV）を含まない 430 keV、下限は装置の時間分解能（AppendixC.1 参照）を考慮して 300 keV の範囲のイベントを採用した。

1 ただし、この仮定は振動を見るという一点に的を絞るならば、必ずしも必要ではない。
図 4.13: ADC で測定したエネルギースペクトラムの例。

TDC Cut

TDC は、3.3 節で説明したように、一番最初に反応した NaI(Tl) の TDC の値は論理回路における遅延時間に相当する一定値になる（図 4.14 のピーク付近）。複数の NaI(Tl) が反応した場合、一番最初に反応したもの以外はその一定値より遅くなっていく（図 4.14 のピーク直後のスロープ）。1 つの NaI(Tl) のみが反応したイベントでは、他の TDC の値はオーバーフローしてしまっていると考えることがでできるので、1 つはピークの部分をとり、他の 5 つはオーバーフロー値をとるというカッティングを行った。

図 4.14: TDC で測定した時間分布の例。

34
4.2.3 t-Q 補正

t-Q 補正とは

NaI(Tl) シンチレータの発光によって光電子増倍管から出力されるパルスはゆっくりと立ち上がるので、シンチレータの発光量の違い、すなわち、入射粒子のエネルギーの違いによって Discriminator の閾値をこえるまでにかかる時間が無視できないほどに異なってくる（図 4.15）。パルスが閾値をこえるのにかかる時間 δt をエネルギーの関数とみて補正を行うのが t-Q 補正である。

図 4.15: パルス波高と閾値の関係。波高が高いほど閾値をこえるのにかかる時間は短くなる。

補正式の導出

ADC の gate 信号が入力された瞬間を $t = 0$ とし、gate 信号が終了する時刻を $t = t_g$ とする。また、PMT からの入力パルスを以下の関数で近似する：

$$V_p(t) = \begin{cases}
 a_1 (t - t_0) & (t_0 \leq t \leq t_0 + w_1) \\
 a_2 e^{t/\tau} & (t_0 + w_1 \leq t \leq t_0 + w_1 + w_2) \\
 0 & \text{(otherwise)}
\end{cases} \quad (4.10)$$

ただし、t_0 は PMT のパルスの立ち上がりの瞬間の時刻、w_1 はパルスの立ち上がりにかかる時間、w_2 はパルスのピークから ADC の gate 信号が途切れるまでの時間である。また、$a_i (i = 1, 2)$ と τ は定数であり、特に τ はパルスの減衰を特徴付けるパラメータである。このパルスと ADC の gate 信号の時間関係を図 4.16 に示す。$V_p(t)$ が連続であることから、$t = t_0 + w_1$ における接続条件
図 4.16: 理想化された入力パルス。Δt の分だけ時間が遅れて測定される。

\[
a_1 w_1 = a_2 e^{(t_0 + w_1)/\tau} \rightarrow a_2 = a_1 w_1 e^{-(t_0 + w_1)/\tau}
\] (4.11)

を得る。

今回使用したチャージ積分型 ADC の測定する値は、入力された総電化量 C_{total} にベンダストラップ C_{ped} を足したものになる。NIM 規格のインピーダンスを $R_{\text{NIM}} = 50 \Omega$ として、ADC で測定される電流量 C_{ADC} を求めるとき、

\[
C_{\text{ADC}} = C_{\text{total}} + C_{\text{ped}} \\
= \int_{t_0}^{t_G} dt \frac{|V_p|}{R_{\text{NIM}}} + C_{\text{ped}} \\
= -\int_{t_0}^{t_G} dt \frac{V_p}{R_{\text{NIM}}} + C_{\text{ped}} \\
= -\left(\int_{t_0}^{t_0 + w_1} dt a_1 (t - t_0) + \int_{t_0 + w_1}^{t_0 + w_1 + w_2} dt a_2 e^{t/\tau} \right) + C_{\text{ped}} \\
= \frac{a_1 w_1^2}{2} + a_2 e^{(t_0 + w_1)/\tau} \left(1 - e^{w_2/\tau} \right) + C_{\text{ped}} \\
= \frac{a_1 w_1^2}{2} + a_1 w_1 \tau \left(1 - e^{w_2/\tau} \right) + C_{\text{ped}}
\] (4.12)

となる。最後の等式は式 (4.11) を用いた。ところで、threshold 電圧を $V_t = -15$ mA すると、$a_1 = V_t/\Delta t$ である。また、$t_G = t_0 + w_1 + w_2 = \text{const.}$ であるから、$w_2 = t_G - t_0 - w_1$ となる：

\[
C_{\text{ADC}} = \frac{V_t w_1^2}{2\Delta t} + \frac{V_t w_1 \tau}{\Delta t} \left[1 - \exp \left(\frac{t_G - t_0 - w_1}{\tau} \right) \right] + C_{\text{ped}}
\] (4.13)

ここで、t_0 と Δt の関係を考えてみる。我々の解析においては、1 つの NaI(Tl) が反応したイベントだけを選ぶので、ADC の gate 信号のトリガーは実は自分自身で
ある（3.3節参照）、PMTからのパルス入力は、gate信号の中に入れる必要があるため、ケーブルによって遅延させてある。この時間T_0は測定されるエネルギーの値にはよらない。しかしながら、先に述べたように、PMTからのパルスがthresholdを越えるまでにはΔtの時間が必要であるから、gate信号に対するPMTのパルス入力の遅延時間t_0は、

$$
t_0 = T_0 - \Delta t
$$
となる。これを、式(4.13)に代入すると、

$$
C_{\text{ADC}} = \frac{V_i w_1^2}{2 \Delta t} + \frac{V_i w_1 \tau}{\Delta t} \left[1 - e^{(t_G - T_0 - w_1)/\tau} e^{\Delta t/\tau} \right] + C_{\text{ped}}
$$
(4.14)
となる。

実際のADCのデータは、積分した電流量に比例したある整数値である。1 ADC channelあたりの電荷量[C]をq [C/ADC channel] とすると、C_{ADC}/q やC_{ped} はそれぞれADCの測定値とベデスタルの出力（整数）を与える。ADCが理想的なエネルギー測定の直線性を持っていると仮定すると、測定されたエネルギーE [keV] は次式で与えられる：

$$
E = k \frac{C_{\text{ADC}} - C_{\text{ped}}}{q}
$$
(4.15)
ただし、k は比例係数である。式(4.14)を用いると、

$$
E = \frac{k}{q} \left\{ \frac{V_i w_1^2}{2 \Delta t} + \frac{V_i w_1 \tau}{\Delta t} \left[1 - e^{(t_G - T_0 - w_1)/\tau} e^{\Delta t/\tau} \right] \right\}
$$
(4.16)
となる。これが、エネルギーE と時間のずれΔt の関係である。

TDCでの測定時間（をnsで行ったもの）t' とΔt の関係は次で与えられる：

$$
\Delta t = (t'_0 - t') - t
$$
(4.17)
ここで、t'_0 は$t = 0$に対応するTDCでの測定時間（ns）である。引き算の順序が$t' - t'_0$でないのは、TDCでの測定時間が実際の時間と反転しているためである（3.3節参照）。したがって、時刻tにおけるエネルギーE とTDCの測定結果からわかる時間t' の関係は、式(4.16)より

$$
E = \frac{k}{q} \left\{ \frac{V_i w_1^2}{2(t'_0 - t') - t} + \frac{V_i w_1 \tau}{t'_0 - t'} \left[1 - e^{(t_G - T_0 - w_1)/\tau} e^{(t'_0 - t')/\tau} \right] \right\}
$$
特に、$t = 0$においては

$$
E = \frac{k}{q} \left\{ \frac{V_i w_1^2}{2(t'_0 - t')} + \frac{V_i w_1 \tau}{t'_0 - t'} \left[1 - e^{(t_G - T_0 - w_1)/\tau} e^{(t'_0 - t')/\tau} \right] \right\}
$$
(4.18)
となる。
式 (4.18) において w_1 以外のパラメータはエネルギーに依らないが、ここで w_1 もエネルギーに依らないものと仮定して、式 (4.18) のパラメータを整理すると、

$$E = \frac{-b_2}{t_0 - t'} \left[b_1 - e^{(t_0-t')/\tau} \right]$$ (4.19)

$$b_2 = \frac{k|V_t|w_1 \tau}{q} e^{(t_G - T_0 - w_1)/\tau}$$

$$b_1 = \frac{w_1 + 2\tau}{2\tau e^{(t_G - T_0 - w_1)/\tau}}$$

となる。ただし、$|V_t| = -V_t = 15$ mV であることを用いた。

補正式の適用

p-Ps の寿命は約 125 ps である。これは我々の装置の時間分解能では 0 ns と区別ができない。すなわち、p-Ps のイベント（≒ back-to-back イベント2）はすべて $t = 0$ のイベントととらえることができる。図 4.17 は back-to-back のイベントのみを持ってきて、エネルギーと時間の相関図を描いたものである。

![Energy(PMT1) vs Time correlation](image)

<table>
<thead>
<tr>
<th>h1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean x</td>
</tr>
<tr>
<td>Mean y</td>
</tr>
<tr>
<td>RMS x</td>
</tr>
<tr>
<td>RMS y</td>
</tr>
</tbody>
</table>

図 4.17: back-to-back イベントのエネルギー-時間相関。

今回用いた NaI(Tl) の場合、$\tau \sim O(100$ns) 程度であり、また、図 4.17 $\Delta t|_{t=0} =$

2 pick off などで o-Ps が p-Ps に変化した場合も back-to-back になるが、pick off 以外の p-Ps のイベント数に比べて十分に小さいとした。
t'_0 - t' \sim O(10\text{ns}) 程度であるので、(t'_0 - t')/\tau \sim 10\% となる。したがって、

\begin{equation}
 e^{(t'_0 - t')/\tau} \sim 1 + \frac{t'_0 - t'}{\tau} + O\left(\frac{(t'_0 - t')^2}{\tau}\right)
\end{equation}

としたときの誤差は1%程度である。時間分解能は±2 ns程度なので (AppendixC.1 参照）、この近似を用いて t-Q 補正を行うことにする。最終的な補正式は式 (4.20) と式 (4.20) から、

\begin{equation}
 E = \frac{p_1 + p_2(t'_0 - t')}{t'_0 - t'}
\end{equation}

\begin{align*}
 p_1 &= b_2(1 - b_1), \quad p_2 = \frac{b_2}{\tau}
\end{align*}

となる。これを、t' について解くと、

\begin{equation}
 t' = t'_0 - \frac{p_1}{E - p_2}
\end{equation}

を得る。これは過去の課題演習などで持ち出されている補正式 ([8] など) と同じものである。図 4.17 をプロファイリングし、補正式 (4.22) を用いてフィッティングしたものが図 4.18 である。

Energy(PMT1) vs Time correlation

![Energy vs Time Graph](image_url)

<table>
<thead>
<tr>
<th>Entry</th>
<th>13167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>363.8</td>
</tr>
<tr>
<td>Mean y</td>
<td>1053</td>
</tr>
<tr>
<td>RMS</td>
<td>130</td>
</tr>
<tr>
<td>RMS y</td>
<td>2.509</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>128.6 / 123</td>
</tr>
<tr>
<td>p1</td>
<td>-1023 ± 153.6</td>
</tr>
<tr>
<td>p2</td>
<td>-40.1 ± 24.5</td>
</tr>
<tr>
<td>l0</td>
<td>1056 ± 0.2</td>
</tr>
</tbody>
</table>

図 4.18: t-Q 補正。

o-Ps の寿命測定における t-Q 補正の結果を表 4.4 にまとめると。
表 4.4: t-Q 補正の結果（for o-Ps 寿命測定）

<table>
<thead>
<tr>
<th>PMT No.</th>
<th>t_0</th>
<th>p_1</th>
<th>p_2</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1055.8 ± 0.2</td>
<td>$(1.0 \pm 0.2) \times 10^3$</td>
<td>$(4 \pm 2) \times 10$</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>1061.4 ± 0.2</td>
<td>$(1.4 \pm 0.1) \times 10^3$</td>
<td>$(1 \pm 1) \times 10$</td>
<td>1.29</td>
</tr>
<tr>
<td>3</td>
<td>1058.9 ± 0.2</td>
<td>$(1.43 \pm 0.09) \times 10^3$</td>
<td>68 ± 6</td>
<td>1.18</td>
</tr>
<tr>
<td>4</td>
<td>1067 ± 5</td>
<td>$(6 \pm 4) \times 10^4$</td>
<td>$-(3 \pm 2) \times 10^3$</td>
<td>1.20</td>
</tr>
<tr>
<td>5</td>
<td>1059.4 ± 0.7</td>
<td>$(1.1 \pm 0.4) \times 10^3$</td>
<td>$(1.2 \pm 0.4) \times 10^2$</td>
<td>1.34</td>
</tr>
<tr>
<td>6</td>
<td>1060.3 ± 0.6</td>
<td>$(2.7 \pm 0.4) \times 10^3$</td>
<td>$(2 \pm 2) \times 10$</td>
<td>0.98</td>
</tr>
</tbody>
</table>

4.2.4 結果

前節までのカッティングと t-Q 補正を行い、関数

$$y = C \exp (-\gamma_o t) + B$$

でフィッティングを行ったものが図 4.19 である。ただし、時間 t は ns を単位とする。フィッティングの結果は

$$\gamma = 0.0073 \pm 0.0002 [\text{ns}^{-1}]$$
$$C = (4.9 \pm 0.1) \times 10^2 [\text{counts}]$$
$$B = 167 \pm 1 [\text{counts}]$$
$$\chi^2/\text{NDF} = 340/339 = 1.00$$

となった。o-Ps の寿命 τ_o は γ_o の逆数として与えられるので、

$$\tau_o = \frac{1}{\gamma_o} = 137 \pm 4 (\text{stat.}) [\text{ns}]$$

図 4.19: decay curve of o-Ps. 左：フィット前，右：フィット後
第5章 本実験

5.1 データ解析

寿命の予備実験と同様の Cutting, 補正を加えたところ以下のようなようになった。ただし、エネルギーのキャリプレーションに関しては磁場の影響によって PMT の Gain が変化するので測定ごとにキャリプレーションを行っている。

図 5.1: oscilation each PMT

同じ位相になる ponta と beta, z'gok と zeong を足し合わせたところ 5.2, 5.3 のようになった。
また, 振動していない Zaku と Gelgoog は 5.4 のようになった。

5.1.1 Fitting

以上のヒストグラムを
Entries 804109
Mean 99.2
RMS 213.3
χ²/ndf 67.03/67
const 1083 ± 38.7
mod,dep 0.04966 ± 0.01442
freq 0.00204 ± 0.00051
phase 7.253 ± 0.637
decay rate 0.005921 ± 0.000365
b.g 236.5 ± 12.8

\[\text{Entries} \quad 804109 \]
\[\text{Mean} \quad 99.2 \]
\[\text{RMS} \quad 213.3 \]
\[\chi^2/\text{ndf} \quad 67.03/67 \]
\[\text{const} \quad 1083 \pm 38.7 \]
\[\text{mod,dep} \quad 0.04966 \pm 0.01442 \]
\[\text{freq} \quad 0.00204 \pm 0.00051 \]
\[\text{phase} \quad 7.253 \pm 0.637 \]
\[\text{decay rate} \quad 0.005921 \pm 0.000365 \]
\[\text{b.g} \quad 236.5 \pm 12.8 \]

图 5.2: oscillation ponta beta

Entries 815003
Mean 182.4
RMS 279.3
χ²/ndf 62.15/62
const 20.4 ± 437.4
mod,dep 0.0334 ± -0.1031
freq 0.00062 ± 0.02151
phase 0.4858 ± -0.9847
decay rate 0.000836 ± 0.009441
b.g 7.3 ± 337.3

\[\text{Entries} \quad 815003 \]
\[\text{Mean} \quad 182.4 \]
\[\text{RMS} \quad 279.3 \]
\[\chi^2/\text{ndf} \quad 62.15/62 \]
\[\text{const} \quad 20.4 \pm 437.4 \]
\[\text{mod,dep} \quad 0.0334 \pm -0.1031 \]
\[\text{freq} \quad 0.00062 \pm 0.02151 \]
\[\text{phase} \quad 0.4858 \pm -0.9847 \]
\[\text{decay rate} \quad 0.000836 \pm 0.009441 \]
\[\text{b.g} \quad 7.3 \pm 337.3 \]

图 5.3: oscillation z’gok zeong
図 5.4: oscillation Z’gok Zeong

\[y = A(1 + h \sin(2\pi \Omega x + \phi)) \exp(-\Gamma x) + B \] \quad (5.1)

及び、

\[y = A \exp(-\Gamma x) + B \] \quad (5.2)

で fitting したところ次の 5.1.1, 5.1.1 になった。

表 5.1: fitting oscillation

<table>
<thead>
<tr>
<th>PMT pair</th>
<th>A</th>
<th>h</th>
<th>(\Omega)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponta beta</td>
<td>1083±38.7</td>
<td>0.04966±0.01442</td>
<td>0.02024±0.00051</td>
<td>7.253±0.637</td>
</tr>
<tr>
<td>Z’Gok Zeong</td>
<td>437.4±20.4</td>
<td>-0.1031±0.0334</td>
<td>0.02151±0.00062</td>
<td>-0.9847±0.4858</td>
</tr>
<tr>
<td>Zaku Gelgoog</td>
<td>642.9±22.9</td>
<td>0.06525±0.02466</td>
<td>0.01799±0.00082</td>
<td>-1.195±0.607</td>
</tr>
<tr>
<td>PMT pair</td>
<td>(\Gamma)</td>
<td>B</td>
<td>(\chi^2/\text{ndf})</td>
<td></td>
</tr>
<tr>
<td>Ponta beta</td>
<td>0.005921±0.000365</td>
<td>236.5±12.8</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Z’Gok Zeong</td>
<td>0.009441±0.000836</td>
<td>337.3±7.3</td>
<td>1.002</td>
<td></td>
</tr>
<tr>
<td>Zaku Gelgoog</td>
<td>0.009259±0.000500</td>
<td>389.1±5.3</td>
<td>1.239</td>
<td></td>
</tr>
</tbody>
</table>

となった。
表 5.2: fitting exponential

<table>
<thead>
<tr>
<th>PMT pair</th>
<th>A</th>
<th>(\Gamma)</th>
<th>B</th>
<th>(\chi^2/ndf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponta beta</td>
<td>1152 ±19.4</td>
<td>0.006454±0.000230</td>
<td>250.4±8.6</td>
<td>1.043</td>
</tr>
<tr>
<td>Z’Gok Zeong</td>
<td>426.7±22.6</td>
<td>0.009058±0.000717</td>
<td>334.4±5.1</td>
<td>1.015</td>
</tr>
<tr>
<td>Zaku Gelgoog</td>
<td>615.7±22.1</td>
<td>0.008824±0.000500</td>
<td>386.4±5.6</td>
<td>1.215</td>
</tr>
</tbody>
</table>
第6章 考察

以上の結果からわずかではあるが振動での Fitting の方がよく Fitting 出来ていないので振動が観測出来た可能性がある。振動していない pair では \(\chi^2 \) が同程度であり振動しているのか振動していないのかはっきりとは分からない。原因としては PMT, Target に大きさがあるのが原因と考えられる。いずれにしても \(\chi^2 \) が非常に 1 に近いのではっきりと振動しているとは断言できず、さらなる統計量が必要であると思われる。

6.1 逆位相

理論では Ponta と beta,Z'Gok と Zeong は逆位相になるはずである。しかし、ヒストグラムの高さが異なり、ヒストグラムのゆらぎが大きいために直接逆位相を確認することが出来なかった。

![phase](image)

図 6.1: 比較できない

そこで、実験結果のパラメータをもったヒストグラムを理想的な振動をしたと仮定した時のグラフを書くことで比較した。次の図は振動成分

\[
A \sin(2\pi \Omega x + \phi) \exp(-\Gamma x)
\]

(6.1)
をそれぞれの場合に書いたものである。

図 6.2: oscillation

振動数が異なるため厳密に逆位相にはならないが 200ns 〜 400ns のあたりで逆位相のような振る舞いをしているのが確認できる。以上からこの振動は我々が目的としていた量子振動の可能性がある。

6.2 磁場の非一様性

6.2.1 振動の smearing

磁場が一様でないと色々な振動成分、寿命が混ざってくるため振動が見えにくくなる可能性がある。そこで root を用いて振動成分が混ざったら時のヒストグラムを書いて調べてみた。6.2.1 は modulation depth を 0.07 磁場を 70mT としてヒストグラムを書いた図である。

このときの振動数と寿命はそれぞれ HFS を 204GHz とすると

\[
\Omega = 0.018897 \quad \Gamma = 0.00751 \quad (6.2)
\]

である。磁場が中心から線形に 60mT まで弱くなり、またポジトロニウムの生成は体積に比例すると仮定してヒストグラムを書いたところ、それぞれのヒストグラムは 6.2.1 となりこれを足し合わせると 6.2.1 になった。

modulation depth は小さくなり 400〜500ns あたりの振動が見えなくなっているのが分かる。またこれを

\[
y = A(1 + h \sin(2\pi\Omega x + \phi) \exp(-\Gamma t)) \quad (6.3)
\]
図 6.3: oscillation

図 6.4: oscillation
図 6.5: oscillation

で Fitting すると

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>Ω</th>
<th>φ</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>0.07</td>
<td>0.01890</td>
<td>0</td>
<td>0.007511</td>
</tr>
<tr>
<td>total</td>
<td>0.03374±0.00002</td>
<td>0.01349±0.00000</td>
<td>7.064±0.002</td>
<td>0.007408±0.00000</td>
</tr>
</tbody>
</table>

より、磁場が一样でないと modulation depth だけでなく振動数も崩壊率も中心に比べてある程度小さくなってしまうのが分かる。実際は磁場の非一樣性はもっと複雑になっており、これが振動が見えにくい原因の一つではないかと考えられる。

6.2.2 HFS と崩壊率

崩壊率は 2.30 より磁場の強さが 61mT の時

$$\Gamma = \frac{1}{2} (\frac{1}{4}x^2 \gamma_p + 2\gamma_o) \sim 0.007421$$

である。

今回の直接の目標である HFS は 2.34 から HFS について逆解きすることで得られる。$x << 1$ とすると近似式は

$$\Omega = \frac{HFS}{2} (1 + \frac{1}{2}x^2) - 1 \approx \frac{HFS}{2} \frac{x^2}{2} = \frac{4(\mu H)^2}{HFS}$$
より、

\[HFS = \frac{4(\mu H)^2}{\Omega} \]

（6.6）

となる。これに Fitting の値を代入しまとめたのが 6.2 である。

<table>
<thead>
<tr>
<th>PMT Pair</th>
<th>HFS (GHz)</th>
<th>decay late (exp)</th>
<th>decay rate (osc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>204</td>
<td>0.007421</td>
<td>0.007421</td>
</tr>
<tr>
<td>ponta beta</td>
<td>287.724±38.4218</td>
<td>0.006454±0.000230</td>
<td>0.005921±0.000365</td>
</tr>
<tr>
<td>Z'Gok Zeong</td>
<td>305.778±41.0564</td>
<td>0.009058±0.000717</td>
<td>0.009441±0.000836</td>
</tr>
<tr>
<td>Zaku Gelgoog</td>
<td>255.739±35.5052</td>
<td>0.008824±0.000500</td>
<td>0.009259±0.000500</td>
</tr>
</tbody>
</table>

となった。いずれの値も理論値とは大きく離れており、磁場によって振動している兆候は見えたもののそれが量子振動ではあることはこの結果からは大きく離れており何とも言えない。

系続誤差

系続誤差としては上述の磁場の非一様性と t-Q 補正、時間分解能、キャリブレーションがあげられる。キャリブレーションの誤差は非常に小さいため無視した。t-Q 補正による t の誤差は最大で 0.8 程度であり今回の精度ではこれも無視できそうである。時間分解能も今回の bin 幅では無視できる程度であるので (AppendixC 参照) HFS はやはり磁場の一様性が非常に大事であるのが分かる。2

1 本稿に記すと \(HFS = \frac{4(\mu H)^2}{\Omega} + \Omega \) になる。
2 今回の実験の磁場の値は平均の平均をとってその標準偏差を用いているので上の表の誤差は統計誤差でなく系続誤差である。
第7章 反省

実験装置のデザインにも改善の余地があった。

- 線源とターゲットが離れすぎている、Positronium生成が阻害されている可能性がある。
- \(\beta^+ \) 入射口の直径が 1cm とコリメートする役割を果たしているのだが配置上、アクリルから生じる対消滅の 511keV を防ぐことが出来ず、余分なデータが増えてしまう原因になっている可能性がある。
- 線源からの立体角が小さくなり Event Rate が低くなるので、NaI なるべくターゲットに近い方がよいのだが、フランジのためかなり離さざるを得なかった。

磁場の一様性を確保するには、磁場が一様になるように磁石を大きくするかターゲットを小さくするかをしないといけないのだが磁石が大きすぎるとき振動が見える 45° 方向の検出が磁石によって邪魔される可能性もあるし磁石の固定が問題になる。また、PMT のシールドもしっかりしないといけないのと、磁石が大きくなる分 PMT のアラインメントも難しくなる。ターゲットを小さくすると O-Ps より出来にくくなるので何らかの対策をしないといけない可能性もある。（ただ、過去の論文では何かしたという記述はない。）
第8章 謝辞

本実験をするにあたり、中家先生、南條先生から丁寧かつ熱心なご指導を賜りました。本実験では何かと機材が不足していたのですが、南野先生からは TDC、石野先生からは NaI とシリカパウダーを快く貸して下さりました。また、京都大学化学専攻の早瀬元さんは急なお願いであったにも関わらず、シリカエロゲルを快く融通してくださりました。TA の黄さん、加茂さんは我々の実験を支えてくださいました。ここに感謝の意を表します。
付 録 A

A.1 SiO₂のStopping Power

今回の実験では装置と時間の都合上寿命が十分に測定できる TDC でそれぞれのターゲットに対して測定することが出来なかったため、定性的ではあるが Stopping Power について述べる。

A.1.1 ターゲット

ポジトロニウムの生成源となるシリカパウダーを入れる容器として 2 cm〜3 cm 立方のアクリルキューブを作成した（図 A.1）．また，^{22}Na の β⁺ 線が十分に止まる阻止能をもつ φ50 mm × 70 mm の塩ビパイプ（図 A.2）も用意した¹．

Range が 200ns の TDC を用いて測定した時の pipe, 3cm, 2cm のヒストグラムは次のようなになった。

ヒストグラムを見比べると pipe と 3cm はほとんど同じ形をしているが 2cm だけ少し違うのが分かる。また、BackGround が見える Range ではないので，exp(x/[1]+[0]) で Fitting したところ，以下のような結果になった。

<table>
<thead>
<tr>
<th>表 A.1: fitting</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>[0]</td>
<td>[1]</td>
<td>lifetime</td>
</tr>
<tr>
<td>pipe</td>
<td>6.42e+0</td>
<td>7.12e-3</td>
<td>1.41e+2</td>
</tr>
<tr>
<td>3cm</td>
<td>6.12e+0</td>
<td>7.003-3</td>
<td>1.43e+2</td>
</tr>
<tr>
<td>2cm</td>
<td>7.07e+0</td>
<td>3.65e-2</td>
<td>2.74e+2</td>
</tr>
</tbody>
</table>

以上からこの範囲では，2cm では O-Ps が観測出来ていないのが分かる。しかし，予備実験からも分かるように 2cm のターゲットでは生成できないというわけでもないのも分かる。なので，3cm と比較すると O-Ps の生成が減っているのが推測できる。また，pipe と 3cm のヒストグラムが変わらないということは 3cm であれば，すべての β⁺ を止めることが出来ることを示しているし，2cm と 3cm で O-Ps の

¹ただし，3 cm の立方体と塩ビパイプについてはアクリル管内に収まらないため，プランシの上部に直接乗せる形で実験を行っている。

52
図 A.1: シリカパウダーを入れる立方体容器。辺の長さは左からそれぞれ1 cm, 2 cm, 3 cmである。1 cm四方のものは、β線の阻止能が十分でないために、O-Psがほとんど生成されないと予測されたため、実験では使用を見送った。

図 A.2: 塩ビパイプの外観

生成が減るということは2cmではすべてのβ⁺を止められていない事が推測できる。以上からデータベースの阻止能2.4cmというのはリーズナブルな値と言える。
偏極率はエネルギーが高いほど大きくなるので、β⁺が完全に止まっていないということは目的の「偏極した Positronium」が少なくなっていることである、さらに改善の余地があったと思われる。

A.2 t-Q補正の Cutting

t-Q補正は、P-Psのデータを時間0とみなすことで補正をかけているのが、[8]ではCutをかけているような記述は見られない。すると、P-PsだけでなくO-PsのデータやPick-Offの反応等も入ってしまい正しくt-Q補正をかけることが出来ていない可能性もある。今回は、反対側のPMTがコンプトン及び、55keVpeakの範囲と言う Cuttingを行ったが条件が緩すぎる可能性もあったため次の様な条件で Pontaのtime-Energy相関を書いてみた。

- 1:カットしない
- 2:Pontaがトリガーになった。
- 3:betaがCompton領域と511keVpeakの範囲であった。
図 A.3: 右pipe 左3cm
図 A.4: 左 2cm 右 3cm
4:betaが511keVpeakの範囲でかつた。

5:Pontaがトリガーとなり、betaがほぼ同時になった。 （ほぼ同時の信号はPonta,betaがともに511keVであった時の時間ヒストグラムのpeakの範囲を取ってきた）

6:Pontaがトリガーとなり、betaがComptonと511keVpeakの範囲でかつた。（今回のCutting）

7:Pontaがトリガーとなり、betaがComptonと511keVpeakの範囲でほぼ同年になった。（一番厳密なCutting）

図 A.5: Cutをかえてみると ･･･

すべての相関図はtdcの値が950〜1050(ns)の範囲で書いてある。左から右へ順に1,2,3･･･と並べてある。まず3,4はほぼ同じような形をしておりCompton領域を含めても問題ないのが分かる。また5,7からほぼ同時の信号のうち511keVpeakとComptonの範囲にあるものが大半であり同時に来ているものがP-Psであるのが確認できる。そして6,7が今回のCuttingでもちゃんとP-Psの信号を選択出来ているのが確認できる。そして2,7が大きく形がこととなり、やはりO-Ps等の影響が大きいと考えられる。
付録B

B.1 シリカエアロゲルでのポジトロニウムの生成

今回の実験ではシリカパウダーを用いたが真空を引く際に体積が減らしたり、穴からパウダーが噴き出したり取り扱いが難しかったため京都大学理学研究科化学
専攻の早瀬 元さんにいただいたシリカエアロゲル1をもちいて実験を行った。磁
石の距離は 44mm で設定した。

時間の都合上、セットアップを色々変更し、(フランジを用いなかった、真空が十
分に引けなかった) 他との比較が出来なかったためポジトロニウムの生成について
のみ議論する2。

この実験ではイベント数が少なかったため振動について議論は出来ないので寿
命についてのみ議論を行う。

予備実験と同じカットをかけたところ次のようになった。(t-Q 補正はイベント
数が少ないためうまくできなかった。)

これを

\[y = A \exp(\Gamma x) + B \]

で Fitting すると

<table>
<thead>
<tr>
<th>表 B.1: simulation fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>0.1133±0.0229</td>
</tr>
</tbody>
</table>

となった。磁場は正確に測定していないので何とも言えないが 4cm の距離で
100mT だったことを踏まえると理論値はおおよそ \(\Gamma = 0.00789 \sim 0.00775 \) である。

理論値とは少し離れているが t-Q 補正を行っていないこと、磁場の非一様性が
大きいこと、真空が十分でないために pick-off の補正がかなり大きくなっているこ
と [8] を踏まえるとポジトロニウムは生成されていると考えてよさそうである。

1ポリメチルシルセスキオキサン CH3SiO1.5 エアロゲル
2従来のシリカエアロゲルは表面のみに硫水加工がされてあるが、今回用いたエアロゲルは内部ま
で硫水加工がされていたり、硫水性が非常にいいらしい。このシリカエアロゲルを用いてポジトロニ
ウムを作った先行実験はなく、内部にメチル基がついていてもポジトロニウムの生成に影響がない
か調べた
Lifetime 44cm

<table>
<thead>
<tr>
<th>i1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
<tr>
<td>(\chi^2 / \text{ndf})</td>
</tr>
<tr>
<td>(p_0)</td>
</tr>
<tr>
<td>(p_1)</td>
</tr>
<tr>
<td>(p_2)</td>
</tr>
</tbody>
</table>

Lifetime 44cm

![Graph showing lifetime distribution](image)

Graph B.1: lifetime 44cm
付録C

C.1 測定器のエネルギー・時間分解能について

図 C.1: NaI(Tl) のエネルギースペクトル

検出器のエネルギー分解能の目安として、NaI(Tl) のエネルギースペクトル（図 C.1）における 511 keV のγ線の光電吸収ピークにおける分解能を調べたものが表 C.1 である。概ね 10%程度のエネルギー分解能であることがわかる。

表 C.1: NaI(Tl) のエネルギー分解能（511 keV）

<table>
<thead>
<tr>
<th>PMT No.</th>
<th>energy resolution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.18 ± 0.02</td>
</tr>
<tr>
<td>2</td>
<td>9.71 ± 0.08</td>
</tr>
<tr>
<td>3</td>
<td>8.78 ± 0.02</td>
</tr>
<tr>
<td>4</td>
<td>11.40 ± 0.05</td>
</tr>
<tr>
<td>5</td>
<td>9.7 ± 0.1</td>
</tr>
<tr>
<td>6</td>
<td>9.6 ± 0.1</td>
</tr>
</tbody>
</table>

59
図 C.2: back-to-back イベントのエネルギー-時間相関（再掲）。

また、寿命測定における p-Ps の崩壊イベント（図 C.2）を用いて、検出器の時間分解能を調べた。PMT No.6 に対する結果を表 C.2 に示す。これを一次関数

\[y = a_0 + a_1 x \]

（C.1）

でフィットした結果が図 C.1 および表 C.1 である。これを見ると、エネルギーが下がれば下がるほど、時間分解能が下がる傾向があることがわかる。

しかしながら、一部の PMT は明確に減少していないものもあるため、我々のエネルギーレンジではあまり関係がないのかもしれない。

表 C.2: 検出器の時間分解能とエネルギーの関係（PMT No.4）。

<table>
<thead>
<tr>
<th>energy region [keV]</th>
<th>time resolution [ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>257 - 283</td>
<td>3.4 ± 0.05</td>
</tr>
<tr>
<td>285 - 315</td>
<td>2.8 ± 0.05</td>
</tr>
<tr>
<td>319 - 351</td>
<td>2.5 ± 0.06</td>
</tr>
<tr>
<td>352 - 388</td>
<td>3.3 ± 0.07</td>
</tr>
<tr>
<td>390 - 430</td>
<td>2.0 ± 0.09</td>
</tr>
<tr>
<td>437 - 483</td>
<td>2.5 ± 0.06</td>
</tr>
<tr>
<td>486 - 536</td>
<td>2.27 ± 0.02</td>
</tr>
<tr>
<td>parameter</td>
<td>value</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>a_0</td>
<td>3.6 ± 0.4</td>
</tr>
<tr>
<td>a_1</td>
<td>-0.0027 ± 0.0008</td>
</tr>
</tbody>
</table>
関連図書

[7] V.B.Berestetski et al., "Quantum Electrodynamics"
[8] 2009年度前期課題演習 A2 レポート
[9] 2011年度前期課題演習 A2 レポート
[10] 2008年度前期課題演習 A2 レポート
[12] National Institute of Standards and Technology
 URL: http://www.nist.gov/index.html