Deprecated: Array and string offset access syntax with curly braces is deprecated in /mnt/hep_web/hep_web/member/ichikawa/dokuwiki/inc/init.php on line 563
Warning: Declaration of action_plugin_asciimath::register(&$controller) should be compatible with DokuWiki_Action_Plugin::register(Doku_Event_Handler $controller) in /mnt/hep_web/hep_web/member/ichikawa/dokuwiki/lib/plugins/asciimath/action.php on line 39
Warning: Declaration of action_plugin_indexmenu::register(&$controller) should be compatible with DokuWiki_Action_Plugin::register(Doku_Event_Handler $controller) in /mnt/hep_web/hep_web/member/ichikawa/dokuwiki/lib/plugins/indexmenu/action.php on line 18
====== 統計についてメモ ======
===== 良く使う数字 =====
{{:physics:gauss.png?200|}}
{{:physics:dchi2.png?200|}}
===== 役に立つリンク =====
* http://www-cdf.fnal.gov/physics/statistics/statistics_recommendations.html
* [[http://www.vibrationdata.com/math/int_pdf.pdf|INTEGRATION OF THE NORMAL DISTRIBUTION CURVE]]
===== Covariance Matarix and PDF =====
==== Covariance Matrix ====
$
X=\pmatrix{
X_1\\
X_2\\
.\\
.\\
.\\
X_n\\}
$is a set of observables. $\mu_i$ is a mean of $X_i$.
Covariance matrix is defined as
\Sigma = \pmatrix{
<(X_1-\mu_1)(X_1-\mu_1)> & & <(X_1-\mu_1)(X_2-\mu_2)> & ... & <(X_1-\mu_1)(X_n-\mu_n)> & \\
<(X_2-\mu_2)(X_1-\mu_1)> & & <(X_2-\mu_2)(X_2-\mu_2)> & ... & <(X_2-\mu_2)(X_n-\mu_n)> & \\
.\\
.\\
.\\
<(X_n-\mu_n)(X_1-\mu_1)> & & <(X_n-\mu_n)(X_2-\mu_2)> & ... & <(X_n-\mu_n)(X_n-\mu_n)> & \\
}
\\
Note: diagonal term is equal to $\sigma_i^2$.\\
$\Sigma_{ij}>0$ : positive correlation.\\
$\Sigma_{ij}=0$ : no correlation.\\
$\Sigma_{ij}<0$ : negative correlation.\\
Correlation matrix is defined as
\rho = (\rho_{ij}), \rho_{ij}=\frac{cov(X_i,X_j)}{\sigma_i \sigma_j}
\\
==== Probability Density Function w/ Covariance matrix====
f(x_1,x_2,...,x_n)=\frac{1}{(2\pi)^{n/2}\sqrt{\det(\Sigma))}}\exp(-\frac{1}{2}(x_1-\mu_1,...,x_n-\mu_n)\Sigma^{-1}(x_1-\mu_1,...,x_n-\mu_n)^T)
\\
For two variable case,\\
f(x,y)=\frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho}}\exp[-\frac{1}{2(1-\rho^2)}(\frac{(x-\mu_x)^2}{\sigma_x^2}-\frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}+\frac{(y-\mu_y)^2}{\sigma_y^2})]
\\
==== simulation ====
* http://approximity.com/papers/ptfopt/node19.html