希ガス比例シンチレーション検出器の 開発

市川温子京都大学 秋山晋一(M2)、中家剛、南野彰宏

はじめに

開発の動機 = ニュートリノレスニ重ベータ崩壊 です。

途中で、おや、これってどっかで聞いたような 実験と同じじゃない?と思うかもしれません。 ちゃんと、それは(多分)わかっていて話して

いるので安心してください。

¹³⁶Xeの素晴らしさ

	abound(%)	τ(2νββ) yr	Q(keV)	Q ⁵ /1E16	Q ⁵ xτ(2νββ)/1E36	
48Ca	0.187	3.9E+19	4271	142.12	55.4	enrichment difficult
76Ge	7.8	1.7E+21	2039	3.52	59.9	
82Se	9.2	9.6E+19	2995	24.10	23.1	
96Zr	2.8	2.0E+19	3350	42.19	8.4	
100Mo	9.6	7.1E+18	3034	25.71	1.8	
110Pd	11.8		2013	5.1		
116Cd	7.5	2.8E+19	28 ,2	17.27	4.8	
124Sn	5.64		227 5	5.49		
130Te	34.5	7.62+20	29	10.35	78.6	
136Xe	8.9	2.2E+2	2479	9.36	208.8	
150Nd	5.6	9.2E+18	3367	43.27	4.0	enrichment difficult

* $\tau(2\nu\beta\beta) \propto Q^{11}$, $\tau(0\nu\beta\beta) \propto Q^5$

KamLAND-zen すごいなあ。でもエネルギー分解能 4.1%(σ)なら付け入る隙があるんじゃない?(2vββの寿 命も短いみたいだし)

XenonでIonizationを使う場合のStatistical limit

- W-value 21.5 eV, Fano factor<0.17

 \rightarrow 0.12%(FWHM)@2.48MeV (0.23%(FWHM)@662keV)

A. Bolotnikov, B. Ramsey Nucl. Instr. And Meth. A396(1997) 360

オプション

- Ionization Chamber
 - 大きくすると電気容量も大きい ので電気的(または機械的振 動による) S/Nが問題。
- Proportional Counter
 増幅過程での揺らぎで分解能
 が決まってしまう。
- Proportional Scintillation mode
 大型でも高いエネルギー分解
 の実績あり。

Electroluminescence

Fig. 6.2 Amplification process in gas detectors with gas gain (a) and electroluminescence (b) or proportional scintillation.

Good and stable linearity because

- A linear amplification process.
- #photons ∝ voltage drop rather than to the field strength.

To keep original resolution determined by career generation, 400 photons/e at $\epsilon^{5\%}$

Fig. 3.17 Reduced light output of electroluminescence of xenon gas at 293 K temperature and normal pressure as a function of the reduced electric field strength (compilation of experimental and computer simulation data by Conde [143]).

Baseline design(目標)

- 1 ton enriched ¹³⁶Xe gas (not liquid)
- t 15~30 times higher density than STP
 - 0. ~~~ 0.18g/cm³
 - e.g. ϕ mx1.7m(H) cylinder at 0.18 g/cm³
- > Use proportional scintillation mode (Electroluminescence) for energy measurement
 - Energy resolution goal < $\overline{0.5}$ ($\overline{0.5}$
 - Ultraviolet photon(~170n) deter
- Tracking as TPC
 - Range(2.5MeV e) ~ 210 cm at STP
 - $-T_0$ by primary scintillation signal
 - ジスラメ - Sample 15~20 points using pads. ~5mm spacing.
 - Purpose is to identify two blobs at track ends. \rightarrow distinguish from $\dot{\mathcal{A}s}$ and γ 's.
 - Electric field for drift : $^2.5kV/cm@30bar \rightarrow drift velocity ~1m/ms$

NEXT

NEXT Detection Concept

Cylindrical single drift volume
Scintillation signal for t₀
Ionization signal for separated
energy and tracking measurements
Converted into EL light
Instrumented endcaps
PMTs on energy plane
SiPMs on tracking plane
TPB coating: 170 → 430 nm light

NEXT strengths:

Scalability to ton-scale relatively easy
0.5-1% FWHM energy resolution
Tracking and dE/dx information for event topology

どこが違うの?

- WLS+MPPCではなく、UV sensitiveなMPPCを使う。
 最近、MEGと浜ホトでいい感じ。
- つっこみ:それなら、向こうも購入するんじゃない?
- 2. Proportional scintillation (Electro-luminescence)の 読み出し部にアイデア

Readout by light collection cell (名付けてELCC)

どこが違うの?

- 1. WLS+MPPCではなく、UV sensitiveなMPPCを使う。 最近、MEGと浜ホトでいい感じ。
- つっこみ:それなら、向こうも購入するんじゃない?
- 2. Proportional scintillation (Electro-luminescence)の読み出し部にアイデア

ELCC

- ① Electro-luminescence光の収集効率は格段に良くなる(はず)
- ② トラッキングの際のクロストークが小さくなる(はず)
- ③ エネルギーもMPPCで測定。場所依存が小さくなって エネルギー分解能が上がる(はず)
- ④ 構造的にも大きくしやすい(はず)

開発実情(1) まず、Electro-luminescence光を見る。

ランタンのThからのα線

¹メモリ20µs

Arガス ランタン Thからのアルファ線

ランタンをELCC アノードプ レートの上に乗っけている。 増幅の時間幅とドリフトの時 間幅が同じくらいなので、三 角形の信号

苦労しているところ 初歩の初歩です。。。

- Arが空気より放電しやすいことを認識していなかったので
 - フィードスルーで定格よりも低い電圧で放電。
 - ELCCの4mmのギャップで放電
 - バリ?
- プロトタイプのエネルギー分解能の評価に用いるソース
 - Rangeが30mm以下。有効領域で全エネルギーを落としてくれないといけない。
 - 241Am 60keV X線
 - シンチレーション光が小さ過ぎ
 - 不純物? WLSがへたった?
 - 反射材を入れる?PMTを大きくする?
 - α線

ガスに出てきて崩壊してくれる (そしてガスを汚さない、真空引きできる)線源 ないでしょうか?

年次計画

今年度

- Xe 1気圧, UVPMTでELCC conceptを実証 (X線、γ線、α 線でエネルギー分解能評価)
- UV sensitiveなMPPCでelectro-luminescenceの検出
- MPPCの開発 (w/ 浜ホト)
- MPPC用の読み出し回路の検討
- 5気圧~10気圧のシステム製作
- 科研費を通す。
 来年度
- 5気圧~10気圧、MPPCでトラッキングとエネルギー測定
- 読み出し回路の開発
- 全体のコンポーネントの詳細をつめる。