2022年度課題研究P2 中間発表

Cherenkov検出器

(P2-RICH-Detector)

の作製と観測

大谷尚輝 片岡敬涼 坂本璃月 清水慧人 星野大輝 前田潤 吉岡龍

- 1. Introduction
- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

1. Introduction

- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

1. Introduction

1.1 Cherenkov光

1.2 Cherenkov検出器

1.1 Cherenkov光

- ・Cherenkov光:荷電粒子が物質中の光速よりも速く運動した際に 出す光の衝撃波
- ・Cherenkov光が出る条件: $v_{\text{particle}} > \frac{c}{n}$
- ・あるエネルギー以上でCherenkov光が出る

- ・粒子の進行方向に対して頂角 $\theta_{C}\left(\cos\theta_{c}=\frac{1}{\beta n}\right)$ を持つ円錐状に光が放出
- ・単位長さ・波長あたりの放出光子数: $\frac{d^2N}{d\lambda dx} = \frac{2\pi z^2 \alpha}{\lambda^2} \sin^2 \theta_{C}$

- ・粒子のエネルギー閾値を用いて粒子判別に使える
- ・粒子の速度(大きさ+方向)が分かる

1.2 Cherenkov検出器(1)

直接検出型

検出面にできる円形の像の半径rから荷電粒子の速度βがわかる

問題点:光量が少ないと円が見えず、半径の推定が困難 6/95

1.2 Cherenkov検出器(2)

間接検出型(球面鏡を用いたもの)

荷電粒子の飛跡上から出てきた
 Cherenkov光を、半径Rの球面鏡
 で反射させ、半径R/2の球状検
 出面に集める

(ただし、 $\theta_c \ll 1$ のときのみ)

右図のように平面で切って見る と、<mark>ある点に集まって</mark>見える

1.2 Cherenkov検出器(3)

<u>間接検出型(球面鏡を用いたもの)</u>

・検出器、Cherenkov光はビーム方向まわりの回転について

対称なので出来上がる像は円環になる

光子が円環に集まるので、少ない光子でも半径がわかる

問題点: $\theta_c \ll 1$ でないとそもそも光が集まらない

1.2 Cherenkov検出器(4)

$\theta_c \ll 1$ でなくても光が集まる Cherenkov検出器を作製

P2-RICH-Detector

- 1. Introduction
- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

2.1 従来型(球面鏡)の原理 2.2 P2-RICH-Detector の原理

2.3 P2-RICH-Detector の特徴

2.1 従来型(球面鏡)の原理(1)

・性質1

2.1 従来型(球面鏡)の原理(2)

二つの性質をまとめると、 Cherenkov光が<mark>焦点</mark>に集まり <mark>リング</mark>を形成する

しかし、球面鏡の焦点は近似的なものであり、 近軸近似でしか成り立たない。 ($heta_c \ll 1$)

2.2 P2-RICH-Detctorの原理(1)

放物線鏡であれば平行光線は厳密 に焦点に集まる

<mark>放物線鏡</mark>をCherenkov光の 出す方向に沿って傾けると

2.2 P2-RICH-Detctorの原理(2)

Cherenkov光は円錐状にでるのでビーム軸まわり に回転させるとリングができる

2.3 P2-RICH-Detectorの特徴(1)

放物回転体の完成図

斜め上からの図

2.3 P2-RICH-Detectorの特徴(2)

特徴その1

- ・球面に比べてCherenkov ringが見えやすい
- ・上はP2-Rich-Detectorが検 出面に作るCherenkov ring
- ・下は球面のもの

Chrenkov Ring in P2RichDetector

2.3 P2-RICH-Detectorの特徴(3)

特徴その2

- 入射角と入射位置をず
 らすとCherenkov
 ringがずれてくる。
- ・右は中心から5mmずれ
 た位置に入射角10度で
 入射したもの

Chrenkov Ring in P2RichDetector(leaning)

2.3 P2-RICH-Detectorの特徴(4)

- ・放物回転体にすることで焦点の位置をより 収束させることができる。
- Cherenkov ringは入射位置と入射角により
 異なるのでCherenkov ringを検出すること
 で入射位置と入射角度を読みたい。
 (詳細は後述)

2.3 P2-RICH-Detectorの特徴(5)

- 1. Introduction
- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

4.1 MPPC

4.2 EASIROC

4.3 MPPCのCalibration

4.1 MPPC(1)

Multi-Pixel Photon Counter(MPPC)とは

Pixeled Photon Detector(PPD)と呼ばれる半導体光検出器の 一種。ピクセル化されたAvalanche Photo Diode(APD)が 受光面に多数並んだ構造になっている。以下の特徴を持つ。

- 低電圧(約70V)で動作
- ・高い増倍率(105~106程度)
- 高い検出効率
- 優れた時間分解能
- 磁場の影響を受けない

MPPC(1ch)

MPPC(64ch)

Avalanche Photo Diode(APD)とは

ダイオードに逆電圧を掛けることで、半導体内に大きな電場 が生じる。

電子雪崩が起き、シグナルの強さが指数関数的に 増大(アバランシェ増倍)

アバランシェ増倍を用いたフォトダイオード

MPPCではガイガーモードでAPDを動作させる

ガイガーモードの特徴

- ブレークダウン電圧以上のバイアス電圧で動作
- 増幅率~106
- •入射光子数によらず、電圧値に依存した電荷出力

4.2 EASIROC(1)

- MPPCアレイは8×8=64chあり、二つ使用すると 合計128chになる
- 128chの読み出しをどうするか?(多チャンネルの 読み出し回路を一から作るのは結構大変)

ー台で64chを読み出すことができる EASIROCモジュールを使おう!

4.2 EASIROC(2)

EASIROCとは?

- EASIROC(Extended Analogue Silicon pm Integrated Read Out Chip)はMPPC読み出し用のchipであり、 一枚で32chを読み出すことができる
- 各チャンネルが増幅率可変なアンプ、波形整形 増幅器、discriminatorを有している
- 0~4.5Vの範囲で各MPPCにかけるbias電圧を個別に 調整できるInput DAC機能を所持

<u>EASIROC-MPPCアレイ変換基板</u>

表面

4.2 EASIROC(4)

基本的な使い方

外部トリガーでのデータ取得

- 今回の本実験では外部トリガーで用いる
- トリガー信号をモジュールのhold端子につなぐ
- EASIROCの電荷測定法は波高測定型である(信号波形の ピークの高さと検出光子数は線形の関係にある)

ピークの高さを保持するhold機能が重要!

4.2 EASIROC(5)

Peak hold

入力するトリガー信号のタイミングをdelayさせる などして調整し、ピークの高さを保持させる

In hold

HG output

4.2 EASIROC(6)

<u>実際にピークがholdされている様子</u>

4.3 MPPCのCalibration

MPPCのADC Valueと光電子数の対応付けを行う

fitting関数:

 $\underline{y} = a(V) \cdot \underline{x} + b(V)$ ADC Value 光電子数 $a(V) = c \cdot V + d$ $b(V) = e \cdot V + f$

LEDを用いた数p.e.の信号を用意 様々なバイアス電圧Vで測定、fitting

本番では

ADC Valueから入ってきた光電子数を算出 56/95

- 1. Introduction
- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

5.1 セットアップ

5.2 回路図

5.1 セットアップ(1)

5.1 セットアップ(2)

- 1. Introduction
- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

6.1 解析イントロ

6.2 解析① 円fittingによる最尤推定

6.3 解析② Poisson分布による最尤推定

6.1 解析イントロ(1)

<u>解析でやりたいこと</u>

観測データ(各MPPC chに入った光子数)

6.1 解析イントロ(2)

解析方法(簡易版)

- 1. 光子分布の円っぽさ→ミューオンの入射方向…?
- 2. 各chに入る光子数の分布→ミューオンの入射方向…?
- 3. 機械学習による特徴量の抽出・確率分布の推定(未定)

6.1 解析イントロ(3)

観測データからミューオンの入射情報を推測するためには ([入力 β, X, Y, θ, φ], [観測データ {N_{ch}}]) の組に関する多くのデータが必要

━━→ GEANT4を用いたシミュレーション

シミュレーションでは

観測量にまで粗視化可能

入力 [β, X, Y, θ, φ] 出力 [{*λ*_{*i*}}, {(*x*_{*i*}, *yi*)}]

シミュレーションでの再現

6.1 解析イントロ(4)

GEANT4でのシミュレーション結果の例:

6.1 解析イントロ(5)

解析方法

考えられる解析方法を以下に挙げる:

- 1. fittingによる特徴量の抽出・確率分布の推定、およびそれを用いた入力の最尤推定
- 2. 各chに入る光子数のPoisson分布パラメータの入力依存 性の推定、およびそれを用いた入力の最尤推定
- 3. 機械学習による特徴量の抽出・確率分布の推定(未定)

6.2 解析① 円fittingによる最尤推定(1)

6.2 解析① 円fittingによる最尤推定(2)

入力 [{a_i}] **一→** 出力 [{b_i}]

という関係に対して、

p({b_i}|{a_i}): 入力が{a_i}の時に出力が{b_i}の確率 f({a_i}): 入力が{a_i}の確率

とすると、出力が $\{b_i\}$ の時に入力が $\{a_i\}$ の確率 $P(\{b_i\}|\{a_i\})$ は

$$P(\{a_i\}|\{b_i\}) = \frac{f(a_i)p(\{b_i\}|\{a_i\})}{\int d\{a'_i\}f(a'_i)p(\{b_i\}|\{a'_i\})}$$

6.2 解析① 円fittingによる最尤推定(3)

出力から入力を求めるためにpをシミュレーションで求め る必要があるが、5自由度の確率密度関数を与えるのは 難しい

しかしシミュレーションを見ていくと^βやX,Yに対する 分解能が小さいと考えられる

また出力として(x_c , y_c , r_c)の代わりに(δ_c , φ_c , r_c)を用いる

$$(\delta_{\rm c} = \sqrt{x_{\rm c}^2 + y_{\rm c}^2}, \varphi_{\rm c} = \tan^{-1} \frac{y_{\rm c}}{x_{\rm c}})$$

6.2 解析① 円fittingによる最尤推定(4)

以下のような仮定を置いてpを求める:

- 1. 出力は β に依らない(シミュレーションで β を固定)
- 2. 出力は(*X*, *Y*)に依らない(X=Y=0としてシミュレーション を行う)
- 3. 上の仮定1, 2から入力変数は2つなので出力変数として (δ_c, φ_c) だけを考え、確率分布は独立である: $p(\delta_c, \varphi_c | \theta, \varphi) = p(\delta_c | \theta, \varphi) p(\varphi_c | \theta, \varphi)$

6.2 解析① 円fittingによる最尤推定(5)

θ だけを変化させたときの θ と δ_c の関係($\varphi = 0$):

79/95

6.2 解析① 円fittingによる最尤推定(6)

シミュレーションの結果から

$$p(\delta_c | \theta, \varphi) = \frac{1}{\sqrt{2\pi\sigma^2(\theta, \varphi)}} \exp\left[-\frac{(\delta_c - m(\theta, \varphi))^2}{2\sigma^2(\theta, \varphi)}\right]$$

ただし

$$m(\theta, \varphi) = a(\varphi)\theta = a\theta$$

 $\sigma^2(\theta, \varphi) = const.$

と考えられる

6.2 解析① 円fittingによる最尤推定(7)

装置の回転対称性を考慮して φ 方向のシミュレーションは せずにデータを回転させているため $\varphi \ge \varphi_c$ は線形相関する

$\theta \ge \varphi_c$ の関係だけを見ると以下のようになる($\varphi = 0$):

theta:phi_c

6.2 解析① 円fittingによる最尤推定(8)

シミュレーションの結果から
$$p(\varphi_c|\theta,\varphi) = \frac{1}{\sqrt{2\pi\sigma^2(\theta,\varphi)}} \exp\left[-\frac{(\varphi_c - m(\theta,\varphi))^2}{2\sigma^2(\theta,\varphi)}\right]$$

ただし

$$m(\theta, \varphi) = \varphi$$

$$\sigma^{2}(\theta, \varphi) = const.$$

と考えられる

6.2 解析① 円fittingによる最尤推定(9)

以上で $p(\delta_c|\theta,\varphi), p(\varphi_c|\theta,\varphi)$ が求まったので先の議論から $P(\theta,\varphi|\delta_c,\varphi_c) = \frac{f(\theta,\varphi)p(\delta_c|\theta,\varphi)p(\theta_c|\theta,\varphi)}{\int_{\theta_{\min}}^{\theta_{\max}} d\theta' \int_{0}^{2\pi} d\varphi' f(\theta',\varphi')p(\delta_c|\theta',\varphi')p(\theta_c|\theta',\varphi')}$ の計算を行うことで出力に対する入力の確率分布を得る この確率を最大化する入力を求めればいい

ただし右辺の計算において $f(\theta, \varphi)$ の関数形の決定に関して は後述するが、今のところは一様分布を仮定する

6.2 解析① 円fittingによる最尤推定(10)

実際の観測データは各chに入った光子数であるから、それ を座標の情報に焼き直さなければ円fittingはできない

ここでは各chをその中心座標(X_{ch} , Y_{ch})に代表させ、その座標に光子が N_{ch} 個到着したと見なす

つまりfittingで最小化させる関数は

$$\sum_{\rm ch} N_{\rm ch} \left[\sqrt{(X_{\rm ch} - x_c)^2 + (Y_{\rm ch} - y_c)^2} - r_c \right]$$

6.2 解析① 円fittingによる最尤推定(11)

観測結果から得られたfittingデータを用いて得た入射方向の分布は次のようになる:

と言いたいところだったが、まだ実験中でデータが得られ ていない…

6.2 解析① 円fittingによる最尤推定(12)

上では入射方向に対し、一様分布を仮定したがこれが実際 に妥当な仮定であったかを検定することもできる

が、時間とデータが足りていないので割愛

6.3 解析② Poisson分布による最尤推定(1)

シミュレーションデータに粗視化を施すことで観測データ それ自体のシミュレーション結果を得ることもできる:

6.3 解析② Poisson分布による最尤推定(2)

6.3 解析② Poisson分布による最尤推定(3)

適当な入力に対する一つのchの光子数は以下のように Poisson分布になる:

MPPC1: theta=1(deg), phi=10(deg)

Poisson分布

$$p_{\lambda}(N_{\rm ch}) = \frac{\lambda^{N_{\rm ch}} e^{-\lambda}}{N_{\rm ch}!}$$

6.3 解析② Poisson分布による最尤推定(4)

従って64×2chのPoisson分布のパラメータλを入力に対する 関数

$$\lambda_{\rm ch} = \lambda_{\rm ch}(\theta, \varphi)$$

として求め、

 $P(\theta, \phi) = \prod_{ch} p_{\lambda_{ch}(\theta, \phi)}(N_{ch})$ を最大化させる(θ, ϕ)を求め、それが実際の入力であったと推定することが出来る

6.3 解析② Poisson分布による最尤推定(5)

実際にはシミュレーションは離散的な入力に対してのみ
行っている
連続変数(
$$\theta, \varphi$$
)に対する $\lambda_{ch}(\theta, \varphi)$ は次のような双線形補間に
より定める:
 $\lambda_{ch}(\theta, \varphi) := (1-s)(1-t)\lambda_{ch}(\theta_i, \varphi_j) + (1-s)t\lambda_{ch}(\theta_{i+1}, \varphi)$
 $+ s(1-t)\lambda_{ch}(\theta_i, \varphi_{j+1}) + st\lambda_{ch}(\theta_{i+1}, \varphi_{j+1})$

ただし
$$s = \frac{\theta - \theta_i}{\theta_{i+1} - \theta_i}, \ t = \frac{\varphi - \varphi_j}{\varphi_{j+1} - \varphi_j}$$

(for $(\theta, \varphi) \in [\theta_i, \theta_{i+1}] \times [\varphi_j, \varphi_{j+1}]$)

- 1. Introduction
- 2. 実験原理
- 3. 予備実験(時間がないのでカット)
- 4. 実験装置
- 5. 実験方法
- 6. 解析
- 7. 今後の展望

- ・宇宙線ミューオンの実験データ解析
- ・入力の確率分布*f*を求める
- ・最尤推定がどれくれい推定されているかをシミュレ

ーションで確かめる

- ・X,Yを変えたときのシミュレーションデータも含める
- ・Poisson分布パラメータの補間の仕方を変えてみる
- ・機械学習?

- ・球面ではない放物線の一部を
 回転させた鏡面を持つ
 RICH-detectorを作成した
- 光子数の測定には理論上で 作られるリングに合わせて 置いたMPPC(array)を用いた
- 解析には

 ①Pfitting

 ②Poisson分布
 による最尤推定で入射方向を
 推定する予定である

1.	Introduction
2.	実験原理
3.	予備実験(時間がないのでカット)
4.	実験装置
5.	実験方法
6.	解析
7.	今後の展望

Back up (1) MPPC

MPPCの動作原理(1ピクセル)

 $Q = C(V_{\rm R} - V_{\rm BD})$

Q:出力される電荷

C:APDの容量

VR:逆バイアス電圧

V_{BD}:ブレイクダウン電圧

Back up(2) MPPC

MPPCの動作原理(1ch)

$$Q_{\text{total}} = C(V_{\text{R}} - V_{\text{BD}}) \times N$$

Q_{total}:出力される電荷の総和 N:受光したピクセル数

Back up(3) MPPC

adc[28]

Back up(4) MPPC

ダークカウント

Back up(5) MPPC

アフターパルス

Back up(6) MPPC

クロストーク

Back up(7) MPPC

MPPCとプラスチックシンチレーターの接続回路

Back up(8) MPPC

MPPCとプラスチックシンチレーターの接続回路

Back up(9) MPPC

GOMI Connector

Back up(10) EASIROC

EASIROCモジュールの内部基板

Back up(11) EASIROC

Back up(12) EASIROC

基板を作るに当たって

 EASIROCへの入力信号の極性は正電圧に しなければいけない

- MPPCのカソードを正電圧に、アノード
 をEASIROCへの出力につなぐ必要がある
- MPPCとEASIROCのpinを正しく対応させることに注意しなければいけない

Back up(13) EASIROC

MPPCアレイの各チャンネルとEASIROCのチャンネルとの対応

			H1(ch7)	H2(ch6)	H3(ch5)	H4(ch4)	H5(ch3)	H6(ch2)	H7(ch1)	H8(ch0)
			G1(ch15)	G2(ch14)	G3(ch13)	G4(ch12)	G5(ch11)	G6(ch10)	G7(ch9)	G8(ch8)
			F1(ch23)	F2(ch22)	F3(ch21)	F4(ch20)	F5(ch19)	F6(ch18)	F7(ch17)	F8(ch16)
	拡大	すると	E1(ch31)	E2(ch30)	E3(ch29)	E4(ch28)	E5(ch27)	E6(ch26)	E7(ch25)	E8(ch24)
			D1(ch39)	D2(ch38)	D3(ch37)	D4(ch36)	D5(ch35)	D6(ch34)	D7(ch33)	D8(ch32)
			C1(ch47)	C2(ch46)	C3(ch45)	C4(ch44)	C5(ch43)	C6(ch42)	C7(ch41)	C8(ch40)
			B1(ch55)	B2(ch54)	B3(ch53)	B4(ch52)	B5(ch51)	B6(ch50)	B7(ch49)	B8(ch48)
			A1(ch63)	A2(ch62)	A3(ch61)	A4(ch60)	A5(ch59)	A6(ch58)	A7(ch57)	A8(ch56)

Back up(14) EASIROC

基本的な使い方

Input DAC

基本的にMPPCにかけられるbias電圧は全 チャンネル<mark>共通</mark>なので、Input DAC で チャンネル毎にbias電圧を微調整できる

Back up(15) EASIROC

内部トリガーでのデータ取得

- トリガーの設定は基本RegisterValueで行う
- トリガーとするchを設定する(個別に設定で きるし、上側32ch全体を設定することもで きる)
- thresholdの値を設定する(RegisterValue 内のDAC code値を決める)
- DAC code値は0~1023までの値を取り、値 が小さいほどthresholdが大きくなる

Back up(16) EASIROC

EASIROCとMPPCの動作確認

1chMPPC

- 1chMPPCを2つ用いて内部トリガーで確認
 した
- 片方のMPPCにLEDの光を十分当ててそれ をトリガーとし、もう一方のMPPCにLED の光を当て(TTL信号は1kHz、widthは 20ns~30nsで調整した)実験した

Back up(17) EASIROC

Back up(18) MPPCのCalibration

- ADC Valueと検出光子数には線形の関係がある
- 1光電子当たりのADC Value(Gainに相当するもの)とbias電圧に
 も線形の関係がある

これらの関係を求めたい(Calibration)

 これが分かればADC Valueから検出された 光電子数が算出できる

Back up(19) MPPCのCalibration

Back up(20) MPPCのCalibration

Back up(21) MPPCのCalibration

- MPPCの各チャンネルに数光子が入射する程度に光量を調節 (微調整はTTL信号のwidthを変える)
- MPPCアレイのブレイクダウン電圧は53±5 Vで、推奨電圧 は56±5 V

電圧を57.0 Vから57.9 Vまで0.1 V刻みで10個の 電圧値に対してデータを取得(Input DACの補正 で実際にかかっている電圧は少し小さくなる)

Back up(22) MPPCのCalibration

MPPCのADC Valueと光電子数の対応付けを行う

$$y = a(V) \cdot x + b$$

ADC Value 光電子数

a(V)にはバイアス電圧Vの依存性がある

$$a(V) = c \cdot V + d$$

Back up(23) MPPCのCalibration

Back up(24) MPPCのCalibration

(光電子数, ADC Value)の組を得るために、各ピークを 独立なGaussianを用いてfitting

Back up(25) MPPCのCalibration

<u>a(V = 56.568 V)の算出</u>

<u>光電子数 vs. ADC Value</u>のグラフをかき、<mark>線形fitting</mark>

Back up(26) MPPCのCalibration

V依存件

ここまでのことを複数のバイアス電圧Vについて行い、 <u>電圧V vs. a(V)</u>のグラフを線形でfittingする

 $d = -906 \pm 1.318$

121/95

Back up(27) MPPCのCalibration

まとめ

ADC Value と光電子数の対応は(ch0の場合は) $y = a(V) \cdot x + b$ ADC Value 光電子数 $a(V) = c \cdot V + d$ $b = 789.7 \pm 0.01767$ $c = 16.62 \pm 0.02312$ $d = -906 \pm 1.318$

これを64ch×2枚分行うことで

MPPCの各chに入ってきた光電子数がわかる

Back up(28) 解析① 円fittingによる最尤推定

β を変えながらfittingしてみた図が以下:

Energy:x_c

Back up(29) 解析① 円fittingによる最尤推定

入射位置(X,Y)を変えながらfittingをした図が以下: PosX:x_c

Back up(30) 解析① 円fittingによる最尤推定

ランダムな初期方向からミューオンを5000回入射させた時 の $\theta \ge \delta_c$ の関係:

theta:delta_c

左図から $\theta \ge \delta_c$ には 線形相関がありそうだと分かる

Back up(31) 解析① 円fittingによる最尤推定

ランダムな初期方向からミューオンを5000回入射させた時 の $\varphi \ge \varphi_c$ の関係:

phi:phi_c

左図から $\varphi \ge \varphi_c$ には 線形相関がありそうだと分かる