

2020年度 課題研究P2

浅野有香 小林 滉一郎 中西 泰一

中性子に働く重力相互作用を測定すること (重力加速度定数gの測定)

中性子は、相対論的効果と量子効果を無視できるものと 考える。つまり、中性子はニュートンの運動方程式に 従うものとする。

スリット間の距離、中性子を検出した位置、および中性 子が検出された時間から重力加速度 g を算出する。

★:中性子を検出(位置、時間測定)

4.117 m

中性子源の概要

J-PARCの3 GeVシンクロトロン でほぼ光速(約97%)まで加速し た陽子を水銀の標的に衝突させ ることで中性子を作り出し、水 素モデレーターによって中性子 の温度を下げる(エネルギーを 下げる)ことで冷中性子ビーム を生成している。

BL05 NOPを使わせていただいた。

J-PARC施設概要

中性子ビーム

NOPビームラインは、1本の中性子ビー ムをスーパーミラー・ベンダーにより 三分岐させて、低発散ビーム・非偏極 ビーム・偏極ビームを供している。

今回の実験では、低発散ビームを使わせていただいた。

中性子ビーム

低発散ビームの概要(16 m位置での数値)

- ・5.4 × 10⁴ n/s/cm²の中性子フラックス
- ・ビーム発散は5.4 × 10⁻² μstr (低発散) 重力相互作用を測定するのに好条件
- ・ビーム射出部分の大きさは鉛直方向に80 mm、
 水平方向に20 mmである

中性子の速度分布

検出器のパーツ

1.シンチレータ

中性子を観測するため、 ZnS(⁶Liを添加)シンチレータを使用。 厚さ0.25 mm、49 mm×49 mm

⁶Li原子核に中性子があたると **n + ⁶Li → ⁴He + ³H** という反応が起き、生成された2種類の粒子が ZnSを励起することで発光。

2. マルチアノードPMT (H9500)

シンチレータで発生した光をとらえる。 ピクセルサイズが3 mm×3 mmで ピクセル数が16×16=256 読み出しは、水平方向のチャンネルの出力は抵抗回路を用いてまとめて、 32 チャンネルの読み出しとした。重心計算から鉛直方向の位置を求める。

小さい四角はPMTの各ピクセルを表す

各抵抗は49.9Ω

3. 光拡散用ガラス(厚さ3mm、50mm×50mmの石英ガラス)

位置分解能の精度を高めるため、光 をある程度拡散して、複数のピクセ ルに入射させ、入射光量で重みづけ して平均をとることで位置を決定さ せる。

(光がある程度拡散されなければ、 位置分解能はピクセルサイズ/ $\sqrt{2}$ (2 mm)程度になってしまう。)

光拡散用ガラス

1.2.3を以下ののように固定したものを 中性子検出器として用いた。 接着はセロハンテープを用いた。

模式図(光の拡散の仕方)

光拡散用ガラス ピクセル ZnSシンチレータ **PMT** ZnSシンチレータの屈折率≒2.35 中性子入射 光拡散用ガラスの屈折率≒1.54 複数のピクセルに入射

スリット

上流スリット 鉛直方向に0.5 mmスリット(B₄Cスリット)を使用。

下流スリット 50×50 mmで0.5 mmスリットが5mm間隔 (9本のスリット)のCdスリットを 鉛直方向のコリメートに使用。

信号読み出し用 CAEN digitizer DT5740(32ch)

周波数 62.5 MHz (16 nsごとに信号を記録) depthを192000 (MAX) 1/16にダウンサンプリング

 $16 \text{ ns} \times 192000 \times 16 = 49.152 \text{ ms}$

約49 msの時間領域を記録

抵抗回路(水平方向をまとめたもの)

抵抗回路をつないだ検出器

検出器

抵抗回路

(4本)

中性子ビーム射出部

Cdスリット

シミュレーション

トイ・モンテカルロを用いて
 中性子の検出位置や飛行時間をみる

シミュレーションの設定

中性子発生の中心を(0,0,0)とした座標をとる

シミュレーションの設定

- ・中性子発生 100×100×10 mmの空間から一様に発生
 速度方向は上流スリットにあたる範囲に一様
 中性子が発生した時刻 t = 0
- 上流スリット 中心 (x, y)=(21.5, 33) [mm]
 厚み 5mm
- Cd スリット 中心・厚みは上流スリットと同じとした

シミュレーション結果

検出器地点での位置分布

у

シミュレーション結果

検出器地点での y-時間分布

中性子発生地点での速さ分布

シミュレーション結果

fitting関数:
$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - p_2)^2$$

L₁:中性子発生中心から
 上流yスリットまでの距離
 L₂:上流yスリットからCd slitまで

の距離 L₃:Cd slitから検出器までの距離

Ξ.				
		p0	p1	p2
	1	82.38 ± 0.16	1395 <u>+</u> 653	-0.01 ± 0.03
	2	69.86 ± 0.03	1957 <u>+</u> 580	0.00 ± 0.01
	3	57.61 ± 0.07	1583 <u>+</u> 404	-0.00 ± 0.01
	4	45.40 ± 0.10	1179 <u>+</u> 304	-0.02 ± 0.01
'	5	33.06 ± 0.05	1364 <u>+</u> 203	-0.02 ± 0.01
	6	22.9 <u>+</u> 1.3	74 <u>+</u> 33	-0.6 ± 0.3

p₁は *g* =9800 mm/s² だが うまく表れていない!

シミュレーション結果

g の値を変えてみる *g* = 9.8 m/s²

 $g = 0 \text{ m/s}^2$ y:x

		y:t									h2	
_ 9	0		h1		Ē	F					Entries	10657
E S	Ĩ		Entries	9822	÷		and started	a an an an Anna An	s and all the second second second	an a	Mean x	21.5
₹.	Ē	and the second	Mean x	0.02722		80					Mean y	37.73
6	Ē		Std Dev x	37.74		F					Std Dev x	5.442
-	, E		Std Dev x	13.94		70	$(1,2) \to (1,1) \in \mathbb{R}$	S. S	ang kanalan sa		Std Dev y	13.54
	Έ		1	7		E						
	È			ľ í		60						5
6	E		en de la come	6		Ĕ	e ja ve energi	an sa kana kana kana kana kana kana kana		enelle North State State State on the State of	Collected and the	
_	Ē											4
5	°E			-5		50						-
	E		Sense Services	4		F	1978-197324	are the state of the second	本化学学科学生学习 学校的	<mark>h Mahand Kalandar (</mark>)	station of the	
4	°E					40						3
	E		Salatakan tana da	3		E						
3						30	1111月1日(1998年) 1111日 - 111日日 1111日 - 111日 111日 111日 11	一、其实的特殊的物质的			Satisfier and	2
	E			2		Ë						
2	20 <u>-</u>			1			the second states	and the second states of the	ander stade som ander die ander die som ander som a	e de maior de la maior de la companya de la maior de la companya de la companya de la companya de la companya La companya de la comp	attender i Ter	1
	E					E	5 1 1 1 4 7 7 8 4	an an sa marangan dan asar gara.	and 200 press of the second	a da mendra na populación de la constructivitada en secon perta atractivador de la construcción de la construct		
1	0	0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08	0.09	0.1			<u> </u>	10 1				J 0
	0 0		t[s	s]			5	10 1	5 20	25 30	35 x[mm]	1
											- All and All	1

シミュレーション結果

g の値を変えてみる *g* = 9.8 m/s²

 $g = 98 \text{ m/s}^2$

シミュレーション結果

$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - p_2)^2$$
 でfittingした様子
 $g = 0$ m/s²

 $g = 98 \text{ m/s}^2$

シミュレーション結果

$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - p_2)^2$$
でfittingした値

	Ŭ		
	p0	p1	p2
1	82.23 ± 0.04	235 ± 609	0.07 ± 0.07
2	69.89 ± 0.05	-183 <u>+</u> 551	0.07 ± 0.09
3	57.4 ± 0.5	-5 ± 7	-0.69 ± 0.83
4	45.30 ± 0.01	396 ± 335	0.03 ± 0.01
5	33.00 ± 0.01	77 <u>+</u> 153	-0.05 ± 0.02
6	20.68 ± 0.01	-259 <u>+</u> 296	0.02 ± 0.02

g =	0	m/s^2
-----	---	---------

 $g = 9.8 \text{ m/s}^2$

	p0	p1	p2
1	82.38 ± 0.16	1395 <u>+</u> 653	-0.01 ± 0.03
2	69.86 ± 0.03	1957 ± 580	0.00 ± 0.01
3	57.61 ± 0.07	1583 <u>+</u> 404	-0.00 ± 0.01
4	45.40 ± 0.10	1179 <u>+</u> 304	-0.02 ± 0.01
5	33.06 ± 0.05	1364 <u>+</u> 203	-0.02 ± 0.01
6	22.9 ± 1.3	74 <u>+</u> 33	-0.6 ± 0.3

g = 98 m/	$^{\prime}s^{2}$
------------	------------------

	р0	p1	p2
1	82.12 ± 0.10	18627 ± 1366	0.001 ± 0.002
2	70.14 ± 0.12	16337 ± 1122	-0.005 ± 0.003
3	57.66 ± 0.09	18006 ± 1284	-0.000 ± 0.002
4	45.35 ± 0.10	16936 ± 1487	-0.002 ± 0.002
5	32.84 ± 0.07	18471 ± 2141	0.001 ± 0.002
6	22.9 ± 1.3	74 ± 33	-0.6 ± 0.3

シミュレーション

Cd slit と検出器の間の距離を小さくしてみる

シミュレーション結果

6.533 m 地点

0.515 m 地点

y:t

Y方向の広がり 約70mm → 約30mm

$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - p_2)^2 \quad \text{cfitting}$$
0.515m

シミュレーション結果

$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - p_2)^2$$
 Cfitting

6.533 m 地点

0.515 m 地点

	p0	p1	p2		p0	p1	p2
1	82.38 ± 0.16	1395 <u>+</u> 653	-0.01 ± 0.03	1	55.29 ± 0.01	-10591 ± 5951	0.00 ± 0.01
2	69.86 ± 0.03	1957 <u>+</u> 580	0.00 ± 0.01	2	49.71 ± 0.01	-14621 ± 5386	-0.02 ± 0.01
3	57.61 ± 0.07	1583 ± 404	-0.00 ± 0.01	3	44.12 ± 0.03	-7606 ± 3986	-0.00 ± 0.02
4	45.40 ± 0.10	1179 ± 304	-0.02 ± 0.01	4	38.50 ± 0.05	-3460 ± 1175	-0.05 ± 0.04
5	33.06 ± 0.05	1364 ± 203	-0.02 ± 0.01	5	32.992 ± 0.003	-11460 ± 2325	0.013 ± 0.005
6	22.9 <u>+</u> 1.3	74 ± 33	-0.6 ± 0.3	6	25.2 ± 0.3	-243 ± 41	-1.3 ± 0.001

 p_1 は距離によっても変わっている

問題点

- *g*の値が求まらない →原因模索中
- ・線が6本見えているが、実際は5本
 →シミュレーションでのビーム中心(x, y)=(0, 0)としたが
 実際のビーム中心はずれている可能性がある

→Cdスリットの中心位置が正確でない

測定データ

測定された水平位置と鉛直位置の関係

測定された時刻と鉛直位置の関係

ヒストグラムからわかること

測定された時刻と鉛直位置の関係 から見えること

- 全体的に右肩下がり ←重力の効果か?
- 赤丸で囲った位置に線のようなものが 入っている
- ・ 黄色の丸で囲った部分に中性子がいるように見える ←前のバンチの速度が非常に遅いものが見えている可能性?

時間についての1次元ヒストグラムにしてみると

実際に何かしらのピークが存在しているらしい

しかもそのピークは時間的にかなり局在化している

どこに由来したピークなのか?

→ビーム信号にほぼ同期してやってきた高速中性子の信号の可能性

この未知のピークと次のバンチのピークの部分の時間差は大体15 ms程度.

我々が見ている冷中性子の速度のピークは1534 m/sである. 中性子ビームの発生点と検出器の距離は22.88 mなので,最速の冷中性子が届 くまでの時間はおよそ14.9 msとなりほぼ一致しているように見える. さらに赤丸部分の測定された鉛直位置の分布を1次元ヒストグラムで見てみる

時刻34.56msから34.58msの領域を切り取った. 下図は比較用の33.56msから33.58msを切り取ったもの.

下図では3本のスリットからくる中性子が はっきりと分かれているのに対し,上図では スリット部分から来るものが多いが,それ以 外のところから来るものもある程度存在する. つまり,未知ピークの中性子はCdスリットを ある程度通り抜ける.

このピークの位置が次のバンチのビーム信号の位置だとすると,我々が見たいバン チのビーム信号の時刻もわかる。

ガウスフィッティングより, ピークの中心は34.571[ms]

ビーム信号は40 msごとに発されるの で,我々が見たいバンチのビーム信 号の時刻は-5.429 [ms] にあるものと考えられる.

フィッティングのためのデータの補正

中性子検出方法を振り返る

1,2,3の両矢印でつながれた部分を接させてテープで固定する.

重心をとることで求めた中性子の位置と本来の中性子の位置のずれ

鉛直方向にのみ興味があるので下のような2次元の図を考える

y_0 (中性子がぶつ

かった位置)

光は中性子がぶつかった点から4π方向に一様に発される.

このためぶつかった位置 y_0 から見た測定された位置yの 角度hetaは

 $\theta = \frac{\theta_1 - \theta_2}{2}$

また、2つの角度
$$\theta_1 \ge \theta_2$$
は定義より、
 $D - y_0 = d \tan \theta_1$
 $y_0 = d \tan \theta_2$

これらより、

$$y = y_0 + d \tan \theta = y_0 + d \tan \left(\frac{\theta_1 - \theta_2}{2}\right)$$

三角関数の公式より、
 $y = y_0 - \frac{d}{\tan(\theta_1 - \theta_2)} + d\sqrt{\frac{1}{\tan^2(\theta_1 - \theta_2)} + 1}$, $\theta_1 - \theta_2 > 0$
 $y = y_0 - \frac{d}{\tan(\theta_1 - \theta_2)} - d\sqrt{\frac{1}{\tan^2(\theta_1 - \theta_2)} + 1}$, $\theta_1 - \theta_2 < 0$

長さ D

▲ 長さ d

 θ_{2}

θ

(中性子の位置は検出器の下端を0として考える)

さらに計算を進めると、結果として、

$$y = y_0 - \frac{d^2 + y_0(D - y_0)}{D - 2y_0} + \sqrt{\frac{(d^2 + y_0(D - y_0))^2}{(D - 2y_0)^2}} + d^2 \quad , y > y_0$$

$$y = y_0 - \frac{d^2 + y_0(D - y_0)}{D - 2y_0} - \sqrt{\frac{(d^2 + y_0(D - y_0))^2}{(D - 2y_0)^2}} + d^2 \quad , y_0 > y$$

これをy₀について解きたいが,複雑すぎるので数値的に逆関数を求めることにする.

得られる対応は右図のようになる. 端に近づくにつれて,測定されるy座標が 検出器の中央寄りになるという性質が見え る.

重力パラメータ*g*を見積もるためのフィッティングの式の決定

Vはそれぞれの位置での 中性子の速度 このような経路を通ってくる中性子は以下のようないくつかの式を満たす

$$v_{x1} = v_{x2} = v_{x3} (=: v_x)$$
(1)

$$v_{y2} = v_{y1} - g \frac{L_1}{v_x}$$
(2)

$$v_{y3} = v_{y2} - g \frac{L_2}{v_x}$$
(3)

$$Y = v_{y2} \frac{L_2}{v_x} - \frac{1}{2} g \left(\frac{L_2}{v_x}\right)^2 \qquad (4)$$
$$y = v_{y3} \frac{L_3}{v_x} - \frac{1}{2} g \left(\frac{L_3}{v_x}\right)^2 \qquad (5)$$

$$T - t = \frac{L_1 + L_2 + L_3}{v_x} \tag{6}$$

我々が扱いやすい変数はtとyなので、これらの関係式を導く.

まず、(4)の式を用いて v_{y2} を v_x を用いて表す. $Y = v_{y2} \frac{L_2}{v_x} - \frac{1}{2}g \left(\frac{L_2}{v_x}\right)^2$ より、

$$v_{y2} = \frac{v_x}{L_2} \left(Y + \frac{1}{2}g\left(\frac{L_2}{v_x}\right)^2 \right) = \frac{v_xY}{L_2} + \frac{1}{2}g\frac{L_2}{v_x}$$
これと(3)より、 v_{y3} を v_x で表すことができる.
 $v_{y3} = v_{y2} - g\frac{L_2}{v_x}$

より,

$$v_{y3} = \frac{v_x Y}{L_2} + \frac{1}{2}g\frac{L_2}{v_x} - g\frac{L_2}{v_x} = \frac{v_x Y}{L_2} - \frac{1}{2}g\frac{L_2}{v_x}$$

$$z h \geq (5) \downarrow 0,$$

$$y = v_{y3} \frac{L_3}{v_x} - \frac{1}{2}g \left(\frac{L_3}{v_x}\right)^2$$

なので,

$$y = \left(\frac{v_x Y}{L_2} - \frac{1}{2}g\frac{L_2}{v_x}\right)\frac{L_3}{v_x} - \frac{1}{2}g\left(\frac{L_3}{v_x}\right)^2 = \frac{YL_3}{L_2} - \frac{1}{2}g\frac{L_3(L_2 + L_3)}{v_x^2}$$

(6) 式を用いるとyをtで表す式を得ることにな る. $y = \frac{YL_3}{L_2} - \frac{1}{2}g\frac{L_3(L_2 + L_3)}{v_x^2}$ $=\frac{YL_3}{L_2} - \frac{1}{2}g\frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_2)^2}(t - T)^2$ 最後の式がフィッティ ングした際の各次数の 係数に意味を与える

フィッティング下準備

重力パラメータをフィッティングで見 積もるために

- 時間を小さなbinに分け、その中でのyの分布の中心をとる。この分布の中心をとる。この分布の中心が時間とともに動く様子をフィッティングする。
- 3つのスリット別々にフィッティン グする必要があるので、分布の中心 を求めるにあたってデータがどのス リット由来かを知る必要がある

どのデータがどこからきているかをはっきりさせるため、ヒストグラムの各binのイベント 数に対して時間に依存したスレッショルドをかける.

各スリットのデータが分 離したので,フィッティ ングをかけやすくなった.

フィッティング

フィッティングの式は, $y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - T)^2$ ただし、 $p_0 \ge p_1$ がフィッティングパラメータで、このうち p_1 が見積もりたい重力パラメータ.

また、ここまでの議論よりほかのパラメータは $L_1 = 11.88 \text{ [m]}$ $L_2 = 4.467 \text{ [m]}$ $L_3 = 6.533 \text{ [m]}$ T = -5.429 [ms]

であることがわかっている.

式
$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2+L_3)}{(L_1+L_2+L_3)^2} (t-T)^2$$
を用いて,
時刻8 [ms]から35 [ms]の範囲をフィッティ
ングした.

黒線が区切られた時間の中でのy分布の中心. 赤線がフィッティング曲線. 得られた結果は以下の通り

	p ₀ [mm]	$p_1 [\mathrm{mm}/\mathrm{ms}^2]$
上スリット	34.290 ± 0.0032	$\begin{array}{c} 0.00984 \\ \pm \ 0.000052 \end{array}$
中央スリット	22.163 ± 0.0029	$\begin{array}{c} 0.00978 \\ \pm \ 0.000046 \end{array}$
下スリット	9.679 ± 0.0036	$\begin{array}{c} 0.00825 \\ \pm \ 0.000058 \end{array}$

上スリット

 $p_0 = 34.290 \pm 0.0032$ [mm]

$$p_1 = 0.00984 \pm 0.000052 \text{ [mm/ms}^2\text{]}$$

= 9.84 ± 0.052 [m/s²]

中央スリット

 $p_0 = 22.163 \pm 0.0029$ [mm]

$$p_1 = 0.00978 \pm 0.000046 \text{ [mm/ms}^2\text{]}$$

= 9.78 ± 0.046 [m/s²]

下スリット

 $p_0 = 9.679 \pm 0.0036$ [mm]

$$p_1 = 0.00825 \pm 0.000058 \text{ [mm/ms}^2\text{]}$$

= 8.25 ± 0.058 [m/s²]

フィッティングにより得られた鉛直位置と時刻の関係の式をもとに考察を行う.

まずはじめに(黄色の丸で囲われた, 薄く存在する(と思われる)部分に ついて考える.

前のバンチのフィッティング関数を重ね書きすると次のようになる.

先ほどの黄色の丸で囲った部分はや はり前のバンチのフィッティング関 数と重なっていることがわかった. 下スリットのフィッティング結果が他の2つに比べて大きく異なっていることへの考察

下スリットはほかの2つに比べて検出器の端によっている.

フィッティング結果が下スリットだけずれてい るのは端の補正がうまくいっていないのではな いか?

以前は左図で長さdをガラスの厚さ3 mmとして 補正を行った.

しかし,実際にはPMTの受光面にもガラスがあり,その厚さは1.5 mmである.

これも加えてd=4.5 mmとして補正を行う.

$$d = 4.5 \,[\text{mm}]$$

	p ₀ [mm]	$p_1 [{ m mm}/{ m ms}^2]$
上スリット	34.498 ± 0.0033	0.01005 ± 0.000053
中央スリット	22.117 ± 0.0029	0.00992 ± 0.000047
下スリット	9.258 ± 0.0038	0.00901 ± 0.000061

先ほどに比べれば大きく近づいたが,まだかなりずれ ている.

$$d = 6 \text{ [mm]} \& U \subset \mathcal{A} \land \mathcal{E}$$

	p ₀ [mm]	$p_1 [\mathrm{mm}/\mathrm{ms}^2]$
上スリット	34.800 ± 0.0036	0.01036 ± 0.000058
中央スリット	22.060 ± 0.0030	0.01025 ± 0.000049
下スリット	8.625 ± 0.0044	0.00993 ± 0.000070

3つのスリットから得られる重力パラメータgの値が大きく近づいた.

現在のところ,この6 mmという数字に何かしらの根拠があるというわけではないが,検出器の構造にもう一度注目してみれば得られるものがあるかもしれない…

3本分のスリットについて測定を行い,そのうち2本に関しては我々が知る重力パラメータ9.8 m/s^2に近い値が得られた.

1本に関してはほかの2本のデータとは離れた結果が得られ、そのずれの原因としては検出器の端での補正がうまくいっていないこと、あるいは生データの処理方法などに原因があるのではないかと考えられる.

検出器の構造を調べて補正を正しく行うことや,解析用プログラムの改良を行うことでより良い結果が得られるものと期待される.

予備実験や実験準備、本実験で たくさんのサポートをしていただいた 指導教員の中家さん、隅田さん、 TAの中村さん、川上さん。

本当にありがとうございました!

青矢印:重力が存在しなかったときに予想される中性子の軌道 赤矢印:重力が存在したときに予想される中性子の軌道

NOP(中性子光学基礎物理実験装置)はパルス中性子を用いた基礎物理、中性子光学の 研究を主目的とする。NOP ビームラインは、一本の中性子ビームをスーパーミラー・ ベンダーにより三分岐して、低発散ビーム、非偏極ビーム、偏極ビームを供している。

14 仕様

モデレーター	結合型水素モデレーター
中性子波長	2 Å ~ 9 Å
各ブランチの ビーム条件 (16m位置、高さ×幅)	低発散ブランチ:80 mm × 20 mm 非偏極ブランチ:55 mm × 45 mm 偏極ブランチ:80 mm × 50 mm
中性子強度 (16m位置、@1MW)	低発散ブランチ: 5.4 × 10 ⁴ n/s/cm ² 非偏極ブランチ: 9.4 × 10 ⁷ n/s/cm ² 偏極ブランチ: 3.9 × 10 ⁷ n/s/cm ²
ビーム発散 (16 m 位置)	低発散ブランチ:5.4 × 10 ⁻² µstr 非偏極ブランチ:1.0 × 10 ² µstr 偏極ブランチ:1.9 × 10 ² µstr
平均偏極度 (偏極ブランチ)	96%
付属装置	低発散ブランチ:7.5 m 及び 12 m 位置に B₄C スリット 非偏極・偏極ブランチ:12 m 位置に B₄C スリット UCN 発生用ドップラーシフター
その他	NOP ビームラインの壁と天井が遮蔽されていないため、ガンマ線 または散乱中性子を放射する実験では、適切な放射線遮蔽が必要です。

