中性子の重力相互作用の検出

浅野有香 小林滉一郎 中西泰一 (京都大学 理学部 課題研究 P2)

2021年10月5日

目 次

1	実験の目的と原理	4
	1.1 実験の目的	. 4
	1.2 実験の原理	. 4
2	セットアップ	5
3	実験装置及び実験器具	6
	3.1 中性子源	. 6
	3.1.1 中性子の生成	. 6
	3.1.2 低発散ビーム	. 7
	3.1.3 低発散ビームのフラックス	. 8
	3.2 シンチレータ	. 9
	3.3 マルチアノード PMT	. 9
	3.4 光拡散用ガラス	. 10
	3.5 中性子検出器	. 11
	3.6 スリット	. 13
	3.6.1 上流スリット	. 13
	3.6.2 下流スリット	. 13
	3.7 DAQ 及び他の必要機器	. 14
	3.7.1 DAQ	. 14
	- 3.7.2 他の必要機器	. 14
	3.8 配線図	. 16
	3.9 セットアップの様子	. 17
Δ	シミュレーション	19
Т	イ1 シミュレーションの設定	10
	4.1 2 3.2 2.2 3.2	. 10
		. 15
5	解析(前半)	22
	5.1 生波形	. 22
	5.2 中性子パルスの切り取り	. 22
	5.3 積分電荷の計算	. 24
	5.4 重心計算と単位の変換	. 24
	5.5 得られた中性子の (x, y) 分布, (t, y) 分布	. 25
6	解析(後半)	25
	6.1 ビーム信号時刻の決定	. 26
	6.2 重心計算によるずれの補正	. 27
	6.3 フィッティング関数の決定	. 29
	6.4 フィッティングのためのデータ選別	31

	6.5 フィッティング結果	32
7	考察	32
8	謝辞	38
9	参考文献	38

1 実験の目的と原理

1.1 実験の目的

自然界には4つの相互作用が存在するが、これらの相互作用を統一的に記述することは 現代物理学の最も大きな目的の一つである.中でも、素粒子間に働く重力相互作用は電磁相 互作用に比べてはるかに小さいため、測定が難しい.そこでこの重力相互作用が質量のごく 小さい物体にも働くのかどうかを実験によって検証し、また既存の法則と一致するかどう かを確認、具体的には重力加速度gを算出することが本実験の目的である.本実験では、中 性子を使用した.

1.2 実験の原理

中性子は,相対論的効果と量子効果を無視できるようなエネルギー領域として考える.つ まり,中性子はニュートンの運動方程式に従う.中性子の運動の始点,スリット間の距離,検 出された位置,検出された時間情報を測定し,適切な fitting 関数を用いることで,重力加速 度gを算出する.

図 1: 重力効果を受ける中性子の軌道の概要図

2 セットアップ

図2のように検出器,スリットを固定した.図2は,それぞれの位置関係を横から見たものである.ビームの進む向きをz軸の正の向き,鉛直上向きをy軸の正の向きとした.また,x 軸の正の向きは図2の手前から奥への向きとした.中性子発生地点をz=0とする.このとき,中性子発生地点から上流スリットまでの距離は11.880 m,上流スリットから壁までの距離は4.467 m,壁から下流スリットまでは0.35 m,下流スリットから検出器までの距離は6.533 mである.

ここで,z方向の距離は正確に計測したが,x方向とy方向については,どれも(ビーム位置,スリット位置,検出器位置)正確に計測できなかった.このx方向とy方向については 中性子ビームが検出器の受光面にしっかりぶつかる場所に固定した.つまり,ビーム射出部 とスリット,検出器はほぼ一直線上に並んでいると考えられる.

図 2: セットアップの概要図

図 3: J-PARCの概要図

図 4: 陽子が標的に衝突し,中性子が発生 し四方八方に打ち出される

3 実験装置及び実験器具

3.1 中性子源

中性子源として,大強度陽子加速器施設 J-PARC (Japan Proton Accelerator Research Complex)の物質・生命科学実験施設 MLF (Material and Life science Experimental Facility)の BL05 の中性子ビーム(低発散ビーム)を使用した.この中性子ビームは,周波数 が 25 Hz, すなわち,40 ms 毎に中性子が打ち出される.

3.1.1 中性子の生成

J-PARC の 3GeV シンクロトロンでほぼ光速(約 97 %)まで加速した陽子を水銀の標 的に衝突させることで中性子を作り出し,水素モデレーターによって中性子の温度を下げ る(エネルギーを下げる)ことで冷中性子ビームを生成している. 図のように複数の中性 子ビームが存在するが,その中の BL05 の中性子ビームを使用した.

図 6: 低発散ビーム(奥から手前に向かって 図 5: 3本に分岐した中性子ビーム. 左から低ビームが射出.) 発散, 非偏極, 偏極ビームである.

3.1.2 低発散ビーム

BL05のビームラインはスーパーミラー・ベンダーによって図5のように3本に分岐されて,低発散ビーム・非偏極ビーム・偏極ビームが存在する.本実験では低発散ビーム(図6)を使用した.

低発散ビームの概要

この中性子ビームは図2の16m地点(壁付近)において,次の特徴を持っている.

- 5.4 × 10⁴ n/s/cm² の中性子フラックスを持っている.
- ビーム射出角は 5.4 × 10⁻² μstr の広がり(低発散)を持っている.
- ビーム射出部分の大きさは水平方向に 80 mm, 鉛直方向は 20 mm である.

3.1.3 低発散ビームのフラックス

低発散ビームの中性子速度分布は図7のような分布になっている.速度

$$v = 1534 \text{ m/s}$$

で最大強度となっている.

図 7:

図 9: マルチアノード PMT

図 8: ZnS(⁶Liを添加) シンチレータ

3.2 シンチレータ

本実験では, 中性子を検出するために ZnS(⁶Li を添加)シンチレータ(図 8)を使用した. ⁶Li 原子核は

$$n + {}^{6}Li \rightarrow {}^{4}_{2}He + {}^{3}_{1}H$$

という反応を起こし,生成された 2 種類の粒子が ZnS を励起することで発光する.発生 する光の波長は約 450 *rmnm*,発光量は keV あたり約 50 光子,減衰時間は約 0.1 μsec で ある.

3.3 マルチアノード PMT

シンチレータによって発生した光をとらえる装置として,図9のマルチアノード PMT (型番:H9500)を用いる.受光面は正方形のピクセルで埋め尽くされた形になっており, 光が入射した点をピクセルサイズ程度の分解能で測定することができる.

実際に使用する PMT は, ピクセルサイズが 3mm×3mm でピクセル数が 16×16 のもの である. 我々がとりたいデータは鉛直方向の位置データであるため,水平方向のチャンネ ルの出力については抵抗回路を用いてデータをまとめてしまい, 16+16 の 32 チャンネル でデータを読みだし、それらの重心計算から鉛直方向の位置を求める. 図 11 のように抵 抗をつなぐと,両端の信号比から位置決定はできるものの,回路が存在する分だけ誤差が 大きくなることが考えられる. そのため正しい数値が欲しい鉛直方向のデータはそのまま 読み出し,比較的重要でない水平方向についてはデータをまとめて読み出してチャンネル 数を減らすことにする. 図 11 の右の抵抗回路は基板上に実装し,PMT と抵抗回路,抵抗 回路と CAEN の digitizer(型番:DT5740)をフラットケーブルを用いて接続する. 図 10 は その時に使用した抵抗回路である.

図 10: 読み出しに用いた抵抗回路

図 11: PMT の読み出しの概略図. PMT からの信号 p1,...,p256 を右図のような抵抗回路 で 16 個にまとめ、それらをフラットケーブルで読み出す.

3.4 光拡散用ガラス

マルチアノード PMT での測定はピクセルサイズ程度の分解能を持つが,我々が測定したいのは約1 mm 程度の位置の差であるため,精度を高めなければ意味のあるデータを得ることはできない.そこで,光をあえてある程度拡散して複数のピクセルに入射させ,入射光量で重み付けして平均をとることで位置を決定する.この方法を用いることで,もともと(ピクセルサイズ)/√12 の1 mm 程度の分解能だったものを 0.3 mm 程度まで精度を高めることができる.これを実装するために,シンチレータと PMT の間に距離をとって光を広げる目的で間に石英ガラスを挟む.厚さ 3 mm の 50 mm × 50 mm の石英ガラスを用いることにする.

図 12: 石英ガラス

図 13: PMT, ガラス, シンチレータのジオメトリー 図 14: 実際の中性子検出器

3.5 中性子検出器

マルチアノード PMT にシンチレータと石英ガラスをテープで張り付けて,図 13 のようにしたものを本実験の検出器として用いる.図 14 は実際にくっつけた中性子検出器であり,接着はセロハンテープで施した.

光拡散の模式図

図 15 は光の拡散の仕方を表したものである.ZnS の屈折率はおよそ 2.35, 光拡散用ガ ラスの屈折率はおよそ 1.54 である. 屈折の法則より, シンチレータで発生した光は光 拡散用ガラス全体に広がると考えられる. ただし, 接着は隙間なくされているものと 仮定, すなわち隙間に空気は入っていないと仮定した.

図 15: 光拡散の模式図

図 16: コリメート用 Cd スリット(下流スリット)

3.6 スリット

中性子ビームは低発散ビームではあるが,ある程度広がりを持っているので,コリメートしてより細いビームにする必要がある. 我々が重要視するのは鉛直方向であるため,鉛 直方向に対してコリメートした. 今回用いた B₄C スリットと Cd スリットはともに中性子を遮蔽することができる.

3.6.1 上流スリット

z=11.880 m の位置に, 鉛直方向に 0.5 mm の B₄C スリットがある. 図 2 には明示してい ないが, この上流スリットの手前 118 mm(z=11.762 m)に横スリット(6 mm)が存在す るが, 鉛直方向が重要である今回の重力相互作用の測定ではそれほど重要視はしなかった.

3.6.2 下流スリット

z=16.347 m にある下流スリットとして,図16 に示す Cd でできたスリットを用いる.この Cd シートは5 mm 間隔で 0.5 mm 幅のスリットが合計 9 本入っている.我々の実験のセットアップにおいては5 mm 落ちる中性子はほとんどないため,それぞれのスリットごとにデータをとることができる(異なるスリットを通ってきた中性子が測定において重なることはないと考えられる).

図 17: CAEN

3.7 DAQ及び他の必要機器

3.7.1 DAQ

マルチアノード PMT が発した信号を処理するために CAEN の digitizer (型番:DT5740) を用いる. この装置は周波数が 62.5 MHz であるので, 16 ns ごとに信号を記録すること ができる. depth(サンプリング数)を 192000 とし, 1/16 にダウンサンプリング(つま り 256 ns ごとに 1 点を記録)することにより 49.152 ms の時間領域を記録することがで きる. 中性子のビームパルスが 40 ms であるため, このように設定することで, 速い中性子 から遅い中性子までを一度に測定することができる. また他の設定として, Post trigger が 存在し, 本実験では, 0 に設定していたが, 測定ごとにトリガーの位置が変わるというバグが 起きることがあり, あまり信用できないため, 解析には関与させなかった。

3.7.2 他の必要機器

Preset Scaler

この機器は,入力信号の周波数に対して周波数を下げて出力できるものである.プリ セット値というものを設定し,カウンターが設定したプリセット値と一致したときプ リセットシグナルを出力し,再度カウントを始める仕組みである.これによって周波 数を下げることができる.本実験では,プリセット値を25に設定,つまり,中性子ビー ムの周波数25 Hz を1 Hz に下げた.

Function Generator

この機器は,任意の周波数の波形をもった交流電圧信号を生成することのできる電気計測器である.本実験での使用目的としては,入力信号に対して Delay (+ 30 ms) をさせることである.これによって,トリガーの位置を遅らせることができ測定データを見やすくすることができる.

⊠ 19: Function Generator

図 18: Preset Scaler

3.8 配線図

信号読み出しの配線図は図 20 のようになっている. まず 25 Hz (40 ms) ビーム信号を Prest Scaler によって 1 Hz の信号に周波数を下げる. その後その信号を Function Generator によって Delay (+ 30 ms) させる. これを生データ取得のトリガーとし, CAEN の TRG IN につなげ, PMT には-1100 V (PMT 動作の最大効率)の電圧をかけた. PMT の信号は4 本のフラットケーブルによって抵抗回路につなぎ, 1本のフラットケーブルによって CAEN につないだ. 読みだしたデータは DAQ 用 PC に送る.3.7.1 小節でも述べたように, CAEN の 設定として, depth (サンプリング数) は 192000, 1/16 にダウンサンプリングした.

図 20: 配線の概念図

図 21:4本のフラットケーブルによって抵抗回路をつないだ検出器

検出器

図 22: 検出器を固定した様子

中性子ビーム射出部

Cdスリット

図 23: Cd スリットを固定した様子

3.9 セットアップの様子

図 21 から図 24 は実際にセットアップをした様子である.

図 24: セットアップを上から見た様子

4 シミュレーション

4.1 シミュレーションの設定

今回のセットアップで実際に中性子がどのように振舞うかをみるために, 簡単なモンテ カルロシミュレーションを用いて検出地点での中性子の分布をみた。シミュレーションの セットアップを図 25 に示した。中性子発生場の中心を (0,0,0) とするような座標をとっ た。Cd スリット, 検出器の z 方向の距離は実際に測定した値である. また, 上流スリットと Cd スリットの中心を (x, y) = (21.5 mm, 33 mm) としたが, これはビームの装置で実際に 設定した値である. 中性子発生場については,100 × 100 × 10 mm の空間を仮定し, そこか ら一様に時刻 t = 0 s で中性子が発生するとした. また, スリットの厚さは全て 5 mm と仮 定した.

また,発生した中性子の速度の大きさは 200 m/s から 1800 m/s の範囲で,方向は上流ス リットを通過する範囲で一様に発生させた.

発生させた中性子はニュートンの運動方程式に従うとする.

4.2 シミュレーションの結果

検出器地点での中性子の分布は以下に示した図 26 のようになった. 縦軸は検出器地点 での中性子の y 座標, 横軸は検出器地点に中性子が到達した時刻 t である.

図 25: シミュレーションのセットアップ概念図

図 26 から 6 本の線は時刻 t が大きくなるにつれ, わずかに下がっていることがわかる. これには重力の影響だけでなく, 中性子の発生位置による影響も含まれている. 中性子発生 点の y 座標を y₀ mm とおくと, 検出器地点での y mm との関係は図 27 のようになる.

図 28 には, 横軸に時刻 t, 縦軸に検出器地点での y から発生位置 y₀ を引いたものをとったが, 図 26 より 6 本の線が下がっていることがわかる.

図 26: 検出器地点での時刻 tと y 座標の関係のシミュレーション結果

図 27: 中性子発生点での y₀ と検出器地点の y の関係

図 28: 検出器地点での時刻 t と y – y₀の関係

実際に、6.3章で導入されるフィッテイング関数

$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - T)^2$$

を用い,Tをフィッティングパラメータとして追加すると,フィッテイングの様子は図 29,30 に,結果は表 1,2 のようになる.ただし,フィッティングの範囲は 10 ms から 50 ms とした.

ただし,実際のビームの発生の分布など不明なため,今回のシミュレーション設定とは異 なる可能性がある.

図 29: 時刻 *t* と *y* の fitting の様子

図 30: 時刻 $t \ge y - y_0$ の fitting の様子

表 1: 時刻 *t* と *y* の fitting 結果

	$p_0 \; [\mathrm{mm}]$	$p_1 [{\rm m/s^2}]$	T[ms]
1	82.21 ± 0.02	3.5 ± 1.3	11 ± 6
2	70.05 ± 0.06	0.9 ± 0.2	-31 ± 17
3	57.62 ± 0.06	1.7 ± 1.0	-3 ± 19
4	45.30 ± 0.08	1.2 ± 1.0	-7 ± 29
5	33.07 ± 0.14	1.4 ± 0.9	-18 ± 30
6	20.69 ± 0.03	1.9 ± 0.9	2 ± 12

表 2: 時刻 $t \ge y - y_0$ の fitting 結果

	$p_0 \; [\mathrm{mm}]$	$p_1 [\mathrm{m/s^2}]$	T[ms]
1	102.3 ± 0.1	17.0 ± 3.0	4 ± 4
2	77.0 ± 0.3	9.8 ± 3.0	-11 ± 12
3	51.2 ± 0.1	12.8 ± 2.6	-1 ± 6
4	25.5 ± 0.1	11.9 ± 2.3	-2 ± 5
5	0.1 ± 0.1	12.6 ± 1.7	-5 ± 4
6	-25.5 ± 0.1	13.4 ± 2.2	-0 ± 4

5 解析(前半)

5.1 生波形

CAEN の digitizer で記録された生波形の一部を図 31 に示した. さらに, これらのデー タを単純に足し合わせたデータの図を 32 に示した. 1 つのパルスに注目して拡大したも のが図 33 であり,実際にテールを持った波形をしていることがはっきり見える. これらの 図を見ると,バックグラウンドと中性子のデータの区別が明確であり,適切に threshold をかけてやれば見たいデータが得られるであろうことが予想される. 図 31 のように 1 チャ ンネルずつのデータで見たときに,ノイズによるベースラインからのふらつきは ADC 値 にしてせいぜい 2,3 程度であるのに対し,パルスの高さは一番高いところで多くのパルス で 10 以上はあり,目視の段階でははっきり区別されている.

図 31: 1 つのバンチの測定で各チャンネルから得られた生波形. 横軸は CAEN の digitizer のサンプル番号で,1サンプルが 0.000256 ms に対応する. 縦軸は ADC 値

5.2 中性子パルスの切り取り

次に,得られた図 32 のようなデータから中性子のパルスの部分だけを切り出したい. この為に以下のような方法を用いた.

- 足しあげられた波形において ADC 値の 3 点移動平均をとり, threshold を超えたサ ンプル番号から下回ったサンプル番号までを1つの中性子パルスであると考える.
- 得られた中性子パルスのサンプル番号幅が一定の長さを超えないものは捨てる.

このようにして切り出された中性子パルスの波形の一例を図 34 に示した.

図 32: 各チャンネルごとに得られた生波形の ADC 値を単純に全チャンネル分足しあげた ものの波形

図 33: 足しあげられた波の1つのパルスに注目した図

図 34: 切り出された中性子パルスの波形(左からチャンネル 4,6,8,10,12,14の波形)

図 35: 中性子の波形でベースラインの算出に求める部分と積分範囲を図示したもの.例 としてチャンネル8のデータをとり、赤で囲ったサンプル番号のデータをベースラインの 算出、黄色で囲ったサンプル番号のデータを電荷の積分に用いる.

5.3 積分電荷の計算

切り出された中性子パルスの積分電荷をチャンネルごとに求める.35において赤丸で 囲まれた部分の平均 ADC 値をベースラインとし,黄色の丸で囲った領域についてベース ラインからのずれを足し合わせたものを積分電荷とする.ただしこの方法はパイルアップ による影響を強く受けてしまう.我々は注目している中性子パルスの前後数マイクロ秒に 別の中性子パルスが存在するようなものは僅かであることを仮定している.もし存在して しまうと,ベースラインが正しく求められず積分電荷が狂ったデータが出てきてしまう.

5.4 重心計算と単位の変換

各チャンネルの物理的な位置関係は図 36 のようになっている.重心計算によって水平 座標(以下 *x* 座標)と鉛直座標(*y* 座標)を物理的な単位で表す式は以下のようになる. ここで, *c_i*をチャンネル*i*での積分電荷とする.

$$x = 49 \times \frac{c_0 + c_1 + \dots + c_{15}}{c_0 + c_1 + \dots + c_{31}} \text{ [mm]}$$
$$y = 49 \times \frac{\frac{15.5}{16}(c_0 + c_{16}) + \frac{14.5}{16}(c_1 + c_{17}) + \dots + \frac{0.5}{16}(c_{15} + c_{31})}{c_0 + c_1 + \dots + c_{31}} \text{ [mm]}$$

さらに中性子が観測された時刻も ms(ミリ秒)に変換しておく. 我々の用いた設定では CAEN の digitizer は1 サンプルあたり 0.000256 ms でデータを記録するので,中性子の記 録された時刻 t [ms] は,記録されたサンプル番号 smp と

$$t = 0.000256 \times \text{smp} \text{ [ms]}$$

という関係で結ばれる.

図 36: 各チャンネルの検出器上での位置との対応

図 37: 中性子が検出された *x* 座標と *y* 座標の関係

5.5 得られた中性子の(x, y)分布,(t, y)分布

以上の手順を踏むことにより得られた (*x*, *y*) 分布を図 37 に, (*t*, *y*) 分布を図 38 に示す. 図 37 から検出された中性子がスリットの形を保っていることがわかる.また,図 38 から は中性子の検出される y 座標が時間とともに変化する様が見て取れる.

以下の解析では主に図 38 を用いて地上での重力パラメータの値を推定することを目標 とする.

6 解析(後半)

ここまでの議論で得られた中性子分布を眺めると,以下のような3つの特徴的なふるまいが見える.

図 38: 中性子が検出された時刻 t と y 座標の関係

- 1 つ目は全体としてのふるまいで,測定された時刻が遅くなるにつれて y 分布の中 心が下がっていること.
- 2つ目は図 39の中で赤丸で示した部分の中性子が周りに比べて多くなっていること.
- 3つ目は図 39 の中で黄色の丸で示した部分に薄く中性子の分布が見られること.

これらの3つの点に着目して解析を進めていく.

6.1 ビーム信号時刻の決定

重力パラメータを求めるにあたって中性子の飛行時間と検出された鉛直位置の関係を調べたいので、まずは正確なビーム信号の時刻を手に入れたい.本来このデータは事前の設定からわかるはずの量ではあるが、CAENの digitizer が設定通りに動かないというトラブルが発生したためわからなくなっていた.

まず,中性子の検出時刻の分布図 40 を見る.すると,35 ms 付近に鋭いピークが立っ ているのがわかる.この位置は上で2つ目の着目すべき点として述べた部分と同じあたり の領域である.我々が事前に知っていた中性子の速度分布 41 を見てもこれに対応する部 分は見当たらないので,出所不明の謎のピークということとなる.

しかし,このピークの時刻と図の右端部分に見えている次のバンチのピークの時刻の 差を見ると約15 ms 程度であり,これは速度分布のピークの速度である1534 m/s でビー ム発生点から検出器までの距離22.88 m を割った値とほぼ等しい.このことからこの細 いピークはビーム発生と同時に発生した何かしらの信号をとらえたものであると推測で きる.

図 39: 中性子が検出された時刻 t と y 座標の関係のグラフで特徴的な部分

このピークに対してガウシアンフィッティングで中心位置を求めると, 34.571 ms となる. また, 事前にビーム信号は40 ms ごとに発せられるということを知っていたので, 我々が着目しているバンチのビーム信号の位置は-5.429 ms の位置にあることが分かった.

6.2 重心計算によるずれの補正

上でも述べたが、中性子が検出器にぶつかった位置を決定する方法として、シンチレー タによる発光をガラスで拡散させてから重心をとるという方法を用いている.しかしこの 方法で求まった y 座標は、本来中性子がシンチレータにぶつかった位置からは少しずれて しまう.これは図 42 のように PMT の大きさが有限であるため、拡散した光のすべてを とらえることができず、しかもとらえきれない光に非等方性があることから生じる.

このずれを補正するために図 43 のように考える. 中性子がぶつかった位置から PMT の上端を見上げる角度を θ_1 , PMT の下端を見下ろす角度を θ_2 とする. また, 中性子がシ ンチレータにぶつかった位置の y 座標を y_0 , 重心計算で求まった PMT 上での y 座標を y とする. 光は中性子がシンチレータにぶつかった点から角度について一様に放射されるの で, 重心計算で求まる中性子の位置は, ぶつかった点からみて角度 θ のところにある. これらの文字の定義や関係を数式で書くと,

$$y = y_0 + d \tan \theta$$
$$\theta = \frac{\theta_1 - \theta_2}{2}$$
$$D - y_0 = d \tan \theta_1$$
$$y_0 = d \tan \theta_2$$

図 40: 中性子の測定された時刻の分布

図 41: 文献から得られた中性子の速度分布

図 42: 光の一部を検出器がとらえきれず,重心計算によってずれが生じることを示した 模式図

となる. さらに, これらの式から θ , θ_1 , θ_2 を消去すると,

$$y = y_0 - \frac{d^2 + y_0(D - y_0)}{D - 2y_0} + \sqrt{\frac{(d^2 + y_0(D - y_0))^2}{(D - 2y_0)^2}} + d^2, (y > y_0)$$

$$y = y_0 - \frac{d^2 + y_0(D - y_0)}{D - 2y_0} - \sqrt{\frac{(d^2 + y_0(D - y_0))^2}{(D - 2y_0)^2}} + d^2, (y < y_0)$$

となる. これを y_0 について解きたいが,あまりに複雑な式であるため数値的に解くことにする. 既知のパラメータとして,dには拡散用ガラスの厚さである 3 mm,Dには PMT の受光面有感領域の辺の長さである 49 mm を用いる.得られる $y \ge y_0$ の対応は図 44 のようになる.

6.3 フィッティング関数の決定

ビーム発生点から出発し,検出器に届く中性子が満たさねばならない古典力学の方程式 から,重力パラメータのフィッティングに用いるべき関数を導出する.まず,我々が用い ているセットアップは以下の図 45 のようなものである.地上での重力パラメータをgと すると,以下のような方程式が成立する.

$$v_{x1} = v_{x2} = v_{x3}(=:v_x)$$

$$v_{y2} = v_{y1} - g \frac{L_1}{v_x}$$

$$v_{y3} = v_{y2} - g \frac{L_2}{v_x}$$

図 43: 重心計算によるずれを補正するためのパラメータ,変数の定義

図 44: 中性子が検出された位置 y と中性子が実際にぶつかった位置 y0の関係

図 45: 実験のジオメトリを模式的に表した図

$$Y = v_{y2} \frac{L_2}{v_x} - \frac{1}{2}g(\frac{L_2}{v_x})^2$$
$$y = v_{y3} \frac{L_3}{v_x} - \frac{1}{2}g(\frac{L_3}{v_x})^2$$
$$T - t = \frac{L_1 + L_2 + L_3}{v_x}$$

なお,記号の定義は図45の通りとする.我々が現在持っているデータはyとtの関係なので,この連立方程式の変数を消去し,tとyが満たすべき関係を導き出す.その結果は,

$$y = \frac{YL_3}{L_2} - \frac{1}{2}g\frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2}(t - T)^2$$

である. つまり, 我々はフィッティングパラメータを p₀, p₁として,

$$y = p_0 - \frac{1}{2} p_1 \frac{L_3(L_2 + L_3)}{(L_1 + L_2 + L_3)^2} (t - T)^2$$

という式を用いてフィッティングすればよく,得られた *p*₁ の値が求めたい重力パラメータ に相当する.なお,*L*₁,*L*₂,*L*₃ については直接の測定などによって求まっており,

$$L_1 = 11.88 \text{ [m]}$$

 $L_2 = 4.467 \text{ [m]}$
 $L_3 = 6.533 \text{ [m]}$

である. さらに、ビーム信号の時刻 T については上で議論しており、

$$T = -5.429$$
[m]

であることがわかっている.

6.4 フィッティングのためのデータ選別

フィッティングをするときには、中性子がどこのスリット由来のものかを区別してやる 必要がある.図 38 のような分布にフィッティングをかけようとしても異なるスリットか

図 46: ヒストグラムの bin に threshold をかけて各スリットのデータを分離させたもの

\mathbf{O}				
		$p_0 \; [\mathrm{mm}]$	$p_1 [\mathrm{m/s^2}]$	
	上スリット	34.290 ± 0.0032	9.84 ± 0.052	
	真ん中スリット	34.290 ± 0.0032	9.78 ± 0.046	
	下スリット	9.679 ± 0.0036	8.25 ± 0.058	

表 3:3本のスリットのデータに対するフィッティング結果

ら来た中性子が混ざってしまっているので,結果がフィッティング方法に大きく依存して しまう可能性がある.これを避けるためにあらかじめフィッティングするデータを選別し ておく.2次元ヒストグラム図 38 において,時刻 t に依存した threshold をかける.つま り,ヒストグラムの各 bin について, threshold を超えなかった bin のデータはないものと みなす.そうして得られた新たな分布が図 46 である.

6.5 フィッティング結果

上で導いたフィッティング関数を図 46 の分布に適用する.結果は表 3 で,そのときの フィッティングの図は 47 のようになる.上と真ん中のスリットに関しては我々が知る値 である 9.8 m/s に近い値が得られたが,下のスリットだけはそれらの値から大きくずれて いる.

7 考察

まず1点目に,解析の章でも触れた35 nsの付近にあるピークの正体について考える.このピークの特徴として,この信号を与える粒子はスリットを通り抜けていることがあげら

図 47: 各スリットのデータにフィッティングを施したときの様子. 左が上, 中央が真ん中, 右が下のスリットに対応

図 48: 中性子が検出された時刻の分布で一部の時間領域を切り取ったもの. 左が 34.56 ms から 34.58 ms, 右が 33.56 ms から 33.58 ms の区間を切り取っている.

れる.図48でそれぞれtが34.56msから34.58msの領域を切り取ったものと、33.56ms から 33.58 ms の領域を切り取ったものの比較をしている. ここでわかるのは後者ではス リットの形がはっきりわかるのに対し、前者ではスリットとスリットの間にもイベントが あり、スリットの形がぼやけていることである.このことから、このピークの原因は熱中 性子や冷中性子のようなスリットで止められてしまう粒子ではないことがわかる. さら に、このピークの特徴として、図48に示したように時間幅が非常に狭いことがある.こ れは、ピークの原因となった信号が検出器に到達するまでにぼやけていないということな ので,信号の伝達速度が一様であったということが予想される.はじめはこのピークの正 体がビーム射出と同時に生成された非常に速い高速中性子がスリットをすり抜けて届いた のではないかと考えたが、もし高速中性子であったとするとピークの裾の部分はもっと広 がっているべきであり、ピークの時間幅が数十マイクロ秒に収まってしまうことは考えに くい. この為, この信号を伝達した粒子の正体は光子(γ線)ではないかと予想する. γ 線であればスリットは通り抜けられるし、速度にばらつきがないので我々が観測したピー クの特徴と整合する. γ線そのものが検出器に観測されることはほとんどないと考えられ るが、γ線がシンチレータや検出器などを構成する原子の原子核にぶつかることで中性子 が核から分離され、それを検出器が信号として拾ったものであると考えると説明がつく.

2点目に,解析(後半)の章の冒頭で述べた図 39の黄色の丸で囲った部分のふるまい について考察する.解析の章でフィッテングによって得られたパラメータを用いて,我々 が注目するバンチの1つ前のバンチのy分布の中心のt依存性のグラフをヒストグラムに 重ね書きしたものが図 49 である.これを見ると,黄色の丸で囲った部分は1つ前のバン チの分布の中心と重なっている.このことから,黄色の丸の部分は1つ前のバンチの非常 に遅い中性子が検出されていたものと考えられる.

図 49: ひとつ前のバンチに対するフィッティング関数を (y,t) の 2 次元ヒストグラムに重 ね書きしたもの

	$p_0 \; [\mathrm{mm}]$	$p_1 [\mathrm{m/s^2}]$
上スリット	34.498 ± 0.0033	10.05 ± 0.053
真ん中スリット	22.117 ± 0.00029	9.92 ± 0.047
下スリット	9.258 ± 0.0038	9.01 ± 0.061

表 4: *d* = 4 [mm] としたときのフィッティング結果

3点目にフィッティングの際に一番下のスリットからほかの2つのスリットでの値から 大きくずれた値が得られた理由を考察する.セットアップにおいて下のスリットがほかの 2つと異なっている点は、下のスリットからのイベントは比較的検出器の端のほうによっ ていることがあげられる.解析の章で述べたが、端に近いイベントは重心計算による実 際の位置からのずれの影響を大きく受ける傾向がある.このため、重心計算の補正がう まくいっていなかったために、フィッティングパラメータが実際の値からずれてしまった のではないかと考えられる.解析の章では図43において、dを拡散用ガラスの厚さであ る3mmであるとして補正を行った.しかし実際にはPMTの受光面にもガラスがあり、 その厚さは1.5mmである.この分の厚さを合わせて *d* = 4.5 [mm] であるとして補正を 行う.

d = 4.5 [mm]としたときの $y \ge y_0$ の関係は図 50 のようになっており、この補正を用いたフィッティング結果は表 4、そのときの図が図 51 である.先ほどに比べて 3 つのスリットから得られる結果は接近したが、まだ差がみられる.

さらに d を広げて d = 6 [mm] であるとして補正を行ってみる. このときの $y \ge y_0$ の関係は図 52 であり、この補正を用いたフィッティング結果は表 5、そのときの図が 53 である. 今回の結果では 3 つのスリットから得られる結果は十分に近くなった.

d = 6 [mm] という値に根拠はないが, dの値を広げるにつれて3つのスリットから得ら

図 50: d = 4.5 [mm] としたときの観測された鉛直位置 y と実際にぶつかった鉛直位置 y_0 の関係

図 51: d = 4 [mm] としたときのフィッティング結果

L J		
	$p_0 \; [\mathrm{mm}]$	$p_1 \; [\mathrm{m/s^2}]$
上スリット	34.800 ± 0.0036	10.36 ± 0.036
真ん中スリット	22.060 ± 0.00030	10.25 ± 0.049
下スリット	8.625 ± 0.0044	9.93 ± 0.070

表 5: *d* = 6 [mm] としたときのフィッティング結果

図 52: d = 6 [mm] としたときの観測され鉛直位置 y と実際にぶつかった鉛直位置 y_0 の 関係

図 53: d = 6 [mm] としたときのフィッティング結果

れる結果が近づいていくという傾向がみられた.現在,データの補正をするにあたって, ガラス内での反射や散乱の効果を全く考慮に入れなかった.検出器の構造として正しいd の値は 4.5 mm であるはずだが,反射や散乱の効果によって実質的な d の値が伸びている のではないだろうかと予測される.それらの効果を正しく考慮に入れた補正を行えばより 良い結果が得られるであろうと考えられるが,そのような補正方法はまだ考えついておら ず,今後の課題である.

8 謝辞

指導教員の中家さん,隅田さんには,卒業研究のテーマ決めからいろいろとアドバイスや 提案をしていただきありがとうございました.また,実験に必要な物品の購入をしてくだ さったり,京大内での実験において,たくさんの失敗や疑問点が出てくる中でも,的確なア ドバイスをしていただき本当に感謝しています.6日間の J-PARC での本実験でも,1日中 面倒を見てくださり大変お世話になりました.

J-PARCの三島様には,BL05の中性子ビームを使わせていただきとても感謝しています. また,実験の打ち合わせや現地でのご協力本当にありがとうございました.備え付けてあったシリコンウェハーを落として割ってしまったことは本当に申し訳ありませんでした.

予備実験として KUANS の中性子ビームを使わせていただいた廣瀬さんには,迷惑をお かけすることもありましたが,優しく対応して下さりありがとうございました.

TA の中村さんと川上さんには,実験のアドバイスや分からないところを教えていただき,本当に感謝しています.また,中村さんには現地での本実験でも,セットアップの準備や DAQ の手伝いをしていただきました.ありがとうございました.

最後に,皆さんの協力がなければ,実験はうまくいかなかったと思います.中性子班一同, 心から感謝申し上げます.

9 参考文献