ニュートリノの 微分散乱断面積測定

2019年度課題研究P2 大内柾人、川上将輝、藤原拓、細谷享平

目次

- 一実験目的一理論
- 2. 実験概要
 - 一 J-PARC施設概要
 - 一測定装置/機器類及びセットアップ説明
- 3. 結果/解析
 - 一解析手法ーイベント数・角度分布算出

 ニュートリノ事象に対する 検出効率の評価
背景事象数の評価
シミュレーションによる 見積もりとの比較

謝辞

付録資料

考察

4.

1. 導入

一実験目的 一理論説明

ニュートリノ反応で発生した

ミューオンの角度分布を測定することで、

ニュートリノの存在

及び弱い相互作用の理論の検証を行う。

ニュートリノ反応の理論

ニュートリノ-核子相互作用

荷電粒子を生成する反応(Charged Current反応)のみが検出可能

6

J-PARCニュートリノビームの エネルギー分布

CCQE+CC1πの反応を考える

CCQEが主な反応

2. 実験概要

- J-PARC施設概要 - 測定装置/機器類及びセットアップ説明

J-PARC施設概要

標的(グラファイト)

▼ ニュートリノ前置検出器

ニュートリノビームの生成

炭素標的に30 GeVの陽子ビームを照射

→ パイオンの崩壊によりニュートリノが生成 $\pi^+ \rightarrow \nu_\mu + \mu^+$

ニュートリノビームの構造

2.48 sec毎に一次陽子ビームがターゲットに打ち込まれる

一度のビーム(spill)は8つのbunchに分かれている。

INGRID (ビームの中心軸上の検出器) の真後ろ

測定装置/機器類及びセットアップ説明

実際に組み立てた状態

密度の大きく手頃な(?) Pb(11.34 g/cm³)を約200 kg使用

ビーム方向:20 cm ビーム垂直方向:30 × 30 cm²

鉛ブロックはJ-PARC ハドロングループよりお借りしました

プラスチックシンチレータ 波長変換ファイバー **MPPC**

ミューオンによるシンチレーション光を検出

信号伝達回路 (ADCまで)

ADC:アナログ波形からデジタル信号へ変換 ADC-SiTCP(FADC)

40 MHz Sampling

16ch × 4枚

CAEN製FADC

250 MHz Sampling

8ch

3. 結果/解析

一解析手法 一解析結果(イベント数、角度分布)

データ取得

2020/

2/2 3:00~15:002/2 15:30~2/4 2:00

アクシデント

2/3 1:00~ 断続的に5時間以上ビームがストップ 2/4 2:00 PCの電源が落ちる(?!?!)→測定終了 最終的に、

平均515 kWのビームパワーで 29.5時間(42882 spills)データ取得を行い、 1.14 × 10¹⁹ proton on target 相当の ニュートリノビームデータを得た。

bunch cut

各 bunchを Gaussian+offsetで フィッティング →前方•後方:2σ Veto :4 σ 内をそのbunchの イベントと判定

coincidence

同一spill、同一bunchの反応 ⇒ 同一イベントと識別

と定義

貫通イベント

572 events

110 events

各シンチレータの中心を通ったものとし、散乱角を算出

4. 考察

ーニュートリノ事象に対する検出効率の評価 ー背景事象数の評価 ーシミュレーションによる見積もりとの比較

☆ニュートリノ事象に対する検出効率の評価

・ノイズによる誤Vetoの確率

・trackerの検出効率(後で触れる)

☆背景事象数の評価

Vetoの検出効率

・偶発同時イベント数

Veto thresholdの設定

ノイズによる誤Veto

 $1\sigma \tau c k h m^{2}$

約16%の確率でノイズを信号と判断してしまう。

しかし、それがbunchに対応するタイミングで起きる確率は、

bunch判定の時間 / 測定時間 = 2.4 µs / 8 µs = 0.3

結局、ノイズによる誤Vetoの確率は

0.16 × 0.3 = 0.05 程度

Vetoプレーンの効率テスト

neutrinoイベントの識別にvetoプレーンの感度は非常に重要。 【セットアップ】

- 宇宙線ミューオンが突き抜けた信号をトリガーとした。
- トリガーがかかったうち、何回反応したかを測定した。
- efficiency=反応回数 / トリガー回数

偶然前方と後方が同時に反応する割合

ニュートリノイベント中に含まれる偶発イベント数 ~ 1.50 events

イベント数評価

_

ノイズによる誤Veto:+5.10 event

Vetoのinefficiency:貫通 572 events × 0.02 / 0.98 = -11.67 events

偶発的なcoincidence: -1.50 events

ニュートリノに混ざり込んだ貫通イベントを取り除く

シミュレーションによる見積もり

ニュートリノ反応 NEUT WAGASCI実験(OA角 1°)のもの ターゲットの質量・面積・組成 ビームの運転電力を調整

ミューオンの輸送 Geant4

本実験のセットアップを構築 ミューオンの電磁相互作用を計算

Geant4 によるシミュレーションの様子

シミュレーションとの比較

【イベント数】

シミュレーション結果	実験結果
213.89	102 ± 10

47

前方・後方シンチレータの反応効率の示唆

・角度分布・・・シミュレーションと概ね一致

・ニュートリノイベント数・・・大幅に少ない

→ tracker の検出効率によるものと考えられる

謝辞

指導教員:中家さん、隅田さん

TA: 辻川さん、森さん、李耀漢さん

高エネの院生方:中村和広さん、平本さん、小林さん、e.t.c.

木河さん、塚本さん、KEKの方々、P2のメンバー、e.t.c.

本当にありがとうございました!

付錄資料

- 一 使わなかったスライド集
- 一実験装置分解詳細図及び写真
- ー VETOシンチレータの詳細 (デザイン, efficiencyテスト)
- ー MPPCについて(各種回路図もあり)
- 一4枚コインシデンス時の生波形
- ー cosの誤差資料
- ー信号判別thresholdの値設定

使いません

使いません

ビームタイミング信号

ビームの30 µsec前と100 msec前にパルス信号

➡ 30 µsec前の信号をトリガーとして使用

ビーム強度

単位 POT (Proton on Target)

 $\frac{500 \text{ kW} \times 2.48 \text{sec/spill}}{30 \text{ GeV/POT}} \sim 2.6 \times 10^{14} \text{ POT/spill}$

実験装置分解詳細図 350mm 前方シンチレータ 263mm 89mm 19mm 263mm -350mm 350mm 37mm 575mm 38mm 24mm 29mm 38mm 89mm 149mm 369mm 56 🗕 320mm 🗖

・前方シンチレータ

・後方シンチレータ(2)

89mm

≠ 300mm

・後方シンチレータ

・VETOシンチレータ(1)

vetoプレーンの反応効率は~99%

VETOシンチレータのefficiencyテスト詳細

(threshold=offset+20)

channel	entry	count	efficiency	OR	eff_OR
1'	120460	119440	0.992	119645	0.993
1	120460	105065	0.872		
2'	83411	82675	0.991	82803	0.993
2	83411	75282	0.903		
3'	80910	79820	0.987	79820	0.987
3	80910				
4'	81632	80189	0.982	80330	0.984
4	81632	71089	0.871		
5'	144334	143137	0.992	143402	0.994
5	144334	127480	0.883		
6'	146943	145701	0.992	145923	0.993
6	146943	123171	0.838		
7'	114323	113172	0.990	113389	0.992
7	114323	99924	0.874		
8'	303293	301829	0.995	/	/
8	470257	467773	0.995		/

両側読みの一端のefficiencyが悪い (MPPC電圧が低かったため)

信号の論理和(OR)を取ると 98~99%のefficiencyとなる

→解析でvetoプレーンだけが反応 しなかったイベントのうち、 99%はニュートリノイベント

3'は基盤の破損のためデータが取れな かった。本測定時には動作していた。

 8,8'は1本ずつ測定したため論理和を 載せていない。1本ずつでも99%の efficiencyがある。

シンチレータの隙間による inefficiencyのテスト

inefficiencyの原因

- 光量不足による読み落とし
- ファイバーのヒビなどによる伝達不能
- シンチレータの隙間に当たった場合

Entry	反応数(OR)	efficiency
79084	77548	0.981

MPPCについて

浜松ホトニクス製の光子測定デバイス 光半導体素子であり、優れたフォトンカウンティング能力を持つ ("https://www.hamamatsu.com/jp/ja/product/optical-sensors/mppc/index.html")

信号読み出し回路図

MPPC信号波形 :1目盛り10 mV, 100 ns

4枚のシンチレータによるコインシデンスが取れた時の生波形

71

cosの誤差資料
cosθの標準偏差

解析では、ミューオンがシンチレータの中央を通ったと見なした。 実際には幅がある。

この幅を評価するために以下のようなシミュレーションを行った。

ある組み合わせのシンチレータに対して、

•前方:2.5 cm四方

•後方:5.0 cm四方

の領域からランダムに反応点を選び、cosの値を計算した。 これを繰り返して、cosの分布を描いた。

この分布と、中心を通ったとして計算したcosの値とを照らし合わせる。

cos_center=0.998のイベント 幅は最大でも0.025程度で、 ほとんどがcos_centerの値付近に集中

cos_center=0.703のイベント 幅は最大でも0.1程度あり、 cos_centerの値を中心として 比較的一様に分布

→実際のcosが取り得る値の幅は、大きい所でも0.1くらい

信号判別thresholdの値設定

thresholdの値を変えて 信号 / ノイズの比率を見積もり 比率上で線引きしthreshold値決定 (8bunchから外れている部分の信号を 全てノイズによるものとした)

⇒4層のコインシデンスを取ったとき ニュートリノイベント100に対し ノイズによるイベント0.01未満に なることを確認。

False Veto見積もり

データは各イベントでトリガー信号を中心に、前後4µs、計8µs分のデータを取得。 データ点は4nsに1点で2000点。

そのうち、データとして有効な8bunchに対応するのは 2.4µs / 8µs; 600 / 2000

各2000点データセットの16%は、ノイズ最大波高がthresholdを超える。 →各2000点データセットの84%は、2000点全てのノイズがthreshold未満。 データ各点でノイズがthresholdを超えない確率をrとすると、 $r^{2000} = 0.8413$ よって、r = 0.999914 8bunch中で1点もノイズがthresholdを超えない確率は、 $r^{600} = 0.9497$ 8bunch中、1点のみノイズがthresholdを超えるイベントである確率は $600 * (1-r) * r^{599} = 0.0490$ 8bunch中、2点だけノイズがthresholdを超えるイベントである確率は $600 * 599 / 2 * (1-r)^2 * r^{598} = 0.0013$

以上から観測イベント8bunch(1spill)中で

94.97% はノイズが一度もthresholdを超えない 04.90% はノイズが1点だけthresholdを超える 00.13% はノイズが2点だけthresholdを超える

