Bell の不等式の破れの検証

樫野幸絵 竹田大地
京都大学理学部 課題研究 P1

2020 年 3 月
目次

1 イントロダクション 3

2 Bell の不等式 3
 2.1 CHSH 不等式 3
 2.2 CHSH 不等式の導出 4

3 実験原理 5
 3.1 Bell の不等式の破れ 5
 3.2 偏光と Compton 散乱 6

4 実験装置・方法 7
 4.1 実験装置の概略 7
 4.2 実験器具 8
 4.2.1 プラスチックシンチレータ 8
 4.2.2 光電子増倍管 8
 4.2.3 回路モジュール 8
 4.3 回路 8
 4.4 装置 8

5 実験結果・解析 11

6 考察 .. 11
 6.1 系統誤差以外の要因 11
 6.1.1 135° の NaI 11
 6.1.2 全体的なノイズ 13
 6.1.3 1275keV の関与 13
 6.1.4 実験期間 13
 6.2 系統誤差 13
 6.2.1 φ 由来の系統誤差 13
 6.2.2 θ 由来の系統誤差 15

7 結論 .. 15

8 謝辞 .. 15
1 イントロダクション

1935年にEinstein, Podolsky, Rosenによって量子力学が不完全であると提唱された。例として全スピン0の二つの原子からなる系を二地点A,Bを観測する状況を考える。A,Bは互いに十分離れているとする。この原子対の状態は

\[|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \] (1)

と表される。このとき、量子力学が正しいすると

1. 地点Aでスピンを観測し+ならば地点Bで観測されるスピンは−である
2. 地点Bで観測される粒子の状態はAでの観測に依らない(局所性)
3. 2よりBでスピン±が観測される確率はAでの結果に依らずそれぞれ50%
4. 3よりA,Bでの観測結果が(+,+),(-,−)になりうる

となり、1と3が矛盾する(ERFパラドックス)。この矛盾は、隠れた変数が存在すれば解消する。量子力学は観測値を確率でしか予言できないのに対し、隠れた変数理論では観測値は我々の知らない変数によって、観測する前から決定しているものとする。実験によって量子力学が正しいのか隠れた変数理論が正しいのかを判定する。

2 Bellの不等式

Bellの不等式のうち、CHSH不等式について述べる。

2.1 CHSH不等式

状態|ψ\rangleに対して物理量Ωを観測する。隠れた変数理論によると、観測値は測定する前に隠れた変数ξによって決定している。つまり、状態|ψ,ξ\rangleを観測すると、観測値O(ξ)を得る。観測値がO(ξ)になる分布ρ(ξ)(\int dξ ρ(ξ) = 1)とすると、Ωの期待値は

\[\langle \hat{O} \rangle = \int dξ ρ(ξ)O(ξ) \] (2)

となり、これが量子力学的期待値⟨ψ|Ω|ψ⟩と一致する。観測量としてそれぞれ±1をとる2粒子系を考える。全スピン0の光子対の状態は

\[|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \] (3)

\[= \frac{i}{\sqrt{2}}(|xy\rangle + |yx\rangle) \] (4)

ただし、|x⟩, |y⟩はそれぞれx偏光状態、y偏光状態であり,

\[|\uparrow\rangle = \frac{1}{\sqrt{2}} (|x\rangle + i|y\rangle) \]
\[|\downarrow\rangle = \frac{1}{\sqrt{2}} (|x\rangle - i|y\rangle) \]

はスピン±1の固有状態でそれぞれ右円偏光、左円偏光に対応する。物理量 \(\hat{O} \) として、単位ベクトル \(\mathbf{n} \) の向きを \(x \) 軸としたときに \(x \) 偏光なら+1、\(y \) 偏光なら−1をとるものとする。

二粒子系の状態 \(\psi \) の物理量 \(\hat{O} \) を三地点 A, B で方向 \(a, b \) について観測し、A, B での測定値をそれぞれ \(\alpha(a, \xi) = \pm 1, \beta(b, \xi) = \pm 1 \) とする。ただし、一方の観測によって他方の結果が確定しないよう \(a \neq b \) とする。このとき、\(\alpha \) と \(\beta \) の相関関数は

\[\langle \alpha \beta \rangle = \int d\xi \rho(\xi)\alpha(a, \xi)\beta(b, \xi) \]

となる。

\(a_1, b_2, b_3, a_4 \) を互いに異なる単位方向ベクトルとし、\(\alpha_i = \alpha(a_i, \xi) = \pm 1, \beta_i = \beta(b_i, \xi) = \pm 1 \) \((i = 1, 2, 3, \cdots)\) とすると、CHSH 不等式は次のように書ける。

\[|\langle a_4\beta_2 \rangle + \langle a_4\beta_3 \rangle| + |\langle a_1\beta_2 \rangle - \langle a_1\beta_3 \rangle| \leq 2 \]

\[(7) \]

2.2 CHSH 不等式の導出

\[|\langle a_4\beta_2 \rangle + \langle a_4\beta_3 \rangle| = \left| \int d\xi \rho(\xi)\alpha_4\beta_2 + \int d\xi \rho(\xi)\alpha_4\beta_3 \right| \]
\[= \left| \int d\xi \rho(\xi)\alpha_4(\beta_2 + \beta_3) \right| \]
\[\leq \int d\xi \rho(\xi)|\alpha_4|\beta_2 + \beta_3| \]
\[\leq \int d\xi \rho(\xi)|\beta_2 + \beta_3| \]

\[(8) \]

同様に

\[|\langle a_1\beta_2 \rangle - \langle a_1\beta_3 \rangle| = \left| \int d\xi \rho(\xi)\alpha_1(\beta_2 - \beta_3) \right| \]
\[\leq \int d\xi \rho(\xi)|\beta_2 - \beta_3| \]

\[(10) \]

となる。\(\beta = \pm 1 \) より、以下のいずれかとなる。

\[\beta_2 + \beta_3 = 0 \text{ かつ } \beta_2 - \beta_3 = \pm 2 \]

\[\beta_2 + \beta_3 = \pm 2 \text{ かつ } \beta_2 - \beta_3 = 0 \]

よって

\[|\beta_2 + \beta_3| + |\beta_2 - \beta_3| = 2 \]

\[(14) \]

(9),(11) および (14) 式より、CHSH 不等式 (7) 式が成立する。
3 実験原理

3.1 Bell の不等式の破れ

量子力学で Bell の不等式が破れることを示す。全スピン 0 のパラ・ポジトロニウム (p-Ps) の崩壊によって生成されるγ線対の偏光をA,B地点で観測する。A地点の偏光系をxy, B地点の偏光系をx'y'とする。x軸とx'軸のずれをφとするとき、

\[|x\rangle = |x'\rangle \cos \phi - |y'\rangle \sin \phi \]
\[|y\rangle = |x'\rangle \sin \phi + |y'\rangle \cos \phi \] (15)

となる。A,B地点でx偏光を観測したときα = β = 1, y偏光を観測したときα = β = −1とする。相関関数 \(\langle \alpha \beta \rangle \) は

\[\langle \alpha \beta \rangle = \langle \psi | \alpha \beta | \psi \rangle \] (16)

\[= \frac{1}{2} \left\{ - (\sin \phi \langle x'x \rangle + \cos \phi \langle y'y \rangle) + (\cos \phi \langle xy \rangle - \sin \phi \langle x'y \rangle) \right\} \alpha \beta \left\{ -(\langle x'x \rangle \sin \phi + |y'y\rangle \cos \phi) + (|y'y\rangle \cos \phi - |x'y\rangle \sin \phi) \right\} \]
\[= \frac{1}{2}(\sin^2 \phi - \cos^2 \phi) - \frac{1}{2}(\cos^2 \phi - \sin^2 \phi) \]
\[= - \cos 2\phi \] (17)

となる。CHSH不等式（7）式の左辺について、xy平面とx'y'平面は平行であるとして単位方向ベクトル \(a_i \) （あるいは \(b_i \））と \(a_1 \) のなす角 \(\phi \) とするとき \(\phi _1 = 0, \phi _2 = 3\pi/8, \phi _3 = \pi/8, \phi _4 = \pi/4 \) のとき最大となり、

\[|\langle \alpha \beta \rangle + \langle \alpha_4 \beta_3 \rangle| + |\langle \alpha_1 \beta_2 \rangle - \langle \alpha_1 \beta_3 \rangle| \] (18)

\[= | - \cos 2(\phi _4 - \phi _2) - \cos 2(\phi _4 - \phi _3)| + | - \cos 2(\phi _1 - \phi _2) + \cos 2(\phi _1 - \phi _3)| \]
\[= 2\sqrt{2} > 2 \] (19)

より、CHSH不等式を破る。

隠れた変数理論として相関関数が

\[\langle \alpha \beta \rangle = - \kappa \cos 2\phi \] (20)

の形になると仮定する。これをCHSH不等式（7）式の左辺に代入すると、

\[|\langle \alpha_4 \beta_2 \rangle + \langle \alpha_4 \beta_3 \rangle| + |\langle \alpha_1 \beta_2 \rangle - \langle \alpha_1 \beta_3 \rangle| \] (21)

\[= | - \kappa \cos 2(\phi _4 - \phi _2) - \kappa \cos 2(\phi _4 - \phi _3)| + | - \kappa \cos 2(\phi _1 - \phi _2) + \kappa \cos 2(\phi _1 - \phi _3)| \]
\[\leq |\kappa| \left\{ - \cos 2(\phi _4 - \phi _2) - \cos 2(\phi _4 - \phi _3)| + | - \cos 2(\phi _1 - \phi _2) + \cos 2(\phi _1 - \phi _3)| \right\} \]
\[\leq 2\sqrt{2}|\kappa| \] (22)

つまり、任意の \(\phi \) でCHSH不等式を満たすための \(\kappa \) の条件は

\[|\kappa| \leq \frac{1}{\sqrt{2}} \] (23)

となる。量子力学が正しい場合、(17)式より \(\kappa = 1 \) となる。実験により \(\kappa \) の値を求めて、隠れた変数理論の正否を判断する。
3.2 偏光と Compton 散乱

偏光は直接測定できないので Compton 散乱を利用して、図 1 のように散乱角を \(\theta \)、散乱面と偏光面のなす角を \(\eta \) とするとき微分断面積は Klein-Nielsen の式

\[
\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 \left(\frac{k^2}{k_0^2} \right) \left(\gamma - 2 \sin^2 \theta \cos^2 \eta \right)
\]

で書ける。ここで

\[
\gamma = \frac{k}{k_0} + \frac{k_0}{k}
\]

\[
r_e = \frac{\hbar \alpha}{m_e c}
\]

\[
k_0 = \text{入射 \(\gamma \) 線の波数}
\]

\[
k = \text{散乱 \(\gamma \) 線の波数} = \frac{k_0}{1 + \frac{\hbar \alpha}{m_e c} (1 - \cos \theta)}
\]

\[
\alpha = \text{微細構造定数} \approx \frac{1}{137}
\]

\[
m_e = \text{電子の質量}
\]

\[
c = \text{光速}
\]

である。可能な観測値は \(\alpha, \beta = \pm 1 \)、相関関数は \(\langle \alpha \beta \rangle = -\kappa \cos 2\phi \) とする。まず、A,B 地点での観測値が \(\langle \alpha, \beta \rangle \) となる確率 \(p_{\alpha \beta}(\phi) \) を考えるために、以下の条件を課す。
条件 1 A,B 地点の入れ替えに対する対称性

条件 2 A,B の偏光面を同じ角度だけ回転させる操作に対する対称性

条件 3 規格化条件 \[\sum_{\alpha,\beta=\pm} p_{\alpha\beta} = p_{++} + p_{+-} + p_{-+} + p_{--} = 1 \]

まず、条件 1 より \(\alpha \) と \(\beta \) が対称なので \(p_{+} = p_{-} \) となる。条件 2 より \(xy \) 平面を \(z \) 軸周りに、\(x'y' \) 平面を \(z' \) 軸周りに同時に \(\pi/2 \) だけ回しても確率は変化しないので、\(p_{++} = p_{--} \) となる。以上より、条件 3 と相関関数から

\[\sum_{\alpha,\beta=\pm} p_{\alpha\beta} = 2p_{++} + 2p_{+-} = 1 \] すなわち、

\[\langle \alpha\beta \rangle = 2p_{++} - 2p_{+-} = -\kappa \cos 2\phi \]

となる。これを解くと、

\[p_{++}(\phi) = p_{--}(\phi) = \frac{1 - \kappa \cos 2\phi}{4} \]

\[p_{+-}(\phi) = p_{-+}(\phi) = \frac{1 + \kappa \cos 2\phi}{4} \]

を得る。これらを Klein-仁科の式に適用して、光子対がそれぞれ A,B 地点で散乱され検出器に入り確率 \(P(\phi) \) を求めることができる。A,B ともに散乱角 \(\theta = \pi/2 \) とすると、\(\eta = 0 \) のとき散乱断面積は \((\gamma - 2) \) に比例し、\(\eta = \pi/2 \) のとき \(\gamma \) に比例するので

\[P(\phi) \propto p_{++}(\gamma - 2)^2 + p_{+-}(\gamma - 2)\gamma + p_{-+}(\gamma - 2) + p_{--}\gamma^2 \]

式 (28) を代入して、

\[P(\phi) \propto (\gamma - 1)^2 - \kappa \cos 2\phi \]

が得られる。よって、\(\phi \) ごとに測定すると、イベント数が \(\phi \) に依存して

\[N(\phi) = A - B \cos 2\phi \]

の形になり、\(\phi \) を変えてイベント数を測定することで A,B が測定できる。この測定値 A,B と計算で得られる \(\gamma \) から、以下の式で \(\kappa \) が得られる。

\[\kappa = \frac{B}{A}(\gamma - 1)^2 \]

この \(\kappa \) を評価する。

4 実験装置・方法

4.1 実験装置の概要

1. \(^{22}\text{Na}\) 線源から出る \(\alpha \) をプラスチックシンチレータでトラップし、ポジトロニウム (ps) を作る

2. パラ・ポジトロニウム (p-Ps) の崩壊で \(\gamma \) 線対をプラスチックシンチレータで散乱角 90° で Compton 散乱させる

3. Compton 散乱後の \(\gamma \) 線と電子を検出し、1 イベントとしてカウントする

4. \(\phi \) を 45° 刻みに 0° から 180° のイベント数を測定する
4.2 実験器具

使用した実験器具は以下のとおりである。

- プラスチックシンチレータ
- 光電子増倍管
- 回路モジュール

4.2.1 プラスチックシンチレータ

${}^{22}\text{Na}$ 線源から出る e^+（最大 545keV）をプラスチック内でトラップし、Ps をつくる。この e^+ の物質中での飛程は数 mm 程度であり、接しているプラスチックのほぼ表面で Ps が生成される。また、p-Ps の崩壊で生成される γ 線対（それぞれ 511keV）を Compton 散乱させる散乱体として上下段に設置した。

4.2.2 光電子増倍管

Compton 散乱後の電子と光子のエネルギーを増幅させる。

4.2.3 回路モジュール

使用した回路モジュールは以下のとおりである（表 1）。

<table>
<thead>
<tr>
<th>元素</th>
<th>効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discriminator threshold</td>
<td>超える電圧が入力されたとき、NIM 信号を出力する</td>
</tr>
<tr>
<td>Amplifier (×10)</td>
<td>入力信号を 10 倍にして出力する</td>
</tr>
<tr>
<td>Fan in/out</td>
<td>入力された NIM 信号を加算して出力する (OR 演算)</td>
</tr>
<tr>
<td>Coincidence</td>
<td>同時に入力された NIM 信号を出力する (AND 演算)</td>
</tr>
<tr>
<td>Divider</td>
<td>信号を分ける</td>
</tr>
</tbody>
</table>

表 1: 回路モジュール

4.3 回路

上段のプラスシン、上段の NaI、下段のプラスシン、および下段のいずれかの NaI に同時に信号がきたとき、すべてのプラスシンと NaI について ADC カウントを測定するよう設定した（図 2）。

PMT の印加電圧および Discr の threshold, width の設定は以下のとおりである（表 2）。上段に使用した NaI は本体に Amp 用電源（24[V]）をつなぐ必要があり、ADC カウントが他の NaI と近くなるように印加電圧を低く設定した。threshold はノイズを拾わないように設定した。

4.4 装置

${}^{22}\text{Na}$ 線源からの γ 線が直接 NaI に入らないように鉛を設置した（図 3）。また、欲しいイベントが多く検出できるように、中段のプラスシンと線源が接している面が上下段のプラスシンの中心を通るように設置した。
表 2: 各設定

<table>
<thead>
<tr>
<th></th>
<th>ch</th>
<th>電圧 [V]</th>
<th>threshold[mV]</th>
<th>width[ns]</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラシン 上段</td>
<td>1</td>
<td>-1600</td>
<td>-63.7</td>
<td>75</td>
</tr>
<tr>
<td>プラシン 下段</td>
<td>2</td>
<td>-1600</td>
<td>-27.6</td>
<td>75</td>
</tr>
<tr>
<td>NaI 上段</td>
<td>3</td>
<td>760</td>
<td>-32.6</td>
<td>75</td>
</tr>
<tr>
<td>NaI 0°</td>
<td>4</td>
<td>1200</td>
<td>-51.3</td>
<td>75</td>
</tr>
<tr>
<td>NaI 45°</td>
<td>5</td>
<td>1200</td>
<td>-49.4</td>
<td>75</td>
</tr>
<tr>
<td>NaI 90°</td>
<td>6</td>
<td>1200</td>
<td>-56.7</td>
<td>75</td>
</tr>
<tr>
<td>NaI 135°</td>
<td>7</td>
<td>1200</td>
<td>-55.6</td>
<td>75</td>
</tr>
<tr>
<td>NaI 180°</td>
<td>8</td>
<td>1200</td>
<td>-58.4</td>
<td>75</td>
</tr>
</tbody>
</table>

図 3: 模式圖 (xz 平面)
図 4: 模式図 (xy 平面)

図 5: 実験風景
5 実験結果・解析

実験は4日間に渡って行った。\(\phi = 0^\circ \)の場合を例にとって、得られた全イベント数から有効イベント数をどう決定したか述べる。

- 図6は横軸がADCカウント（エネルギー）、縦軸がイベント数の生のデータである。0の近くでイベント数が大量にあるのでこのようになっているが、これは0°以外の角度でイベントが起こったときにpedestalの近傍でのゆらぎを積分したものが表れている。
- 図7はそれを考慮の上でADCカウントが500未満のものを取り除いた。
- 図8は欲しいイベントのタイムスケール内でのイベントのみを残したもの。これによってcoincidenceがノイズによって起こった場合の多くを除けると考えられる。
- 図9は最終的なヒストグラムである。エネルギー保存の観点から、511keV近傍以上のエネルギーはノイズと処理した。そのために図10のように511keVに対応するADCカウントを求め、その値を\(N_0 \), fittingの際の標準偏差を\(\sigma_0 \)として、\(N_0 - \sigma_0 \)以上のADCカウントを持つイベントは全てカットした。上のNaIについてADCカウントを見なかった。というのも、上のNaIは光電子の増幅が激しく、1イベントの取得時間後にpedestal値に戻らないためである。

以上を全ての角度について行いプロットし、

\[(\text{イベント数}) = A - B \cos 2\phi\]

の形でフィッティングしたものが図11である。縦のエラーバーは統計誤差から、横のエラーバーは装置の位置関係、形状から最大の誤差を用いた。

フィッティングをもとに計算された\(\kappa \)の値は\(\kappa \simeq 0.490 \)である。これは\(1/\sqrt{2} \)より小さく、量子力学に反する結果となった。次節では量子力学を信じ、なぜ\(\kappa \)がこれほどに小さくなったのかを考察する。

6 考察

6.1 系統誤差以外の要因

6.1.1 135°のNaI

今回用いた135°のNaIは他のNaIに比べてノイズが多かった。前節で述べた511keV探しの際に135°のヒストグラムは図12のようにになった。ピークよりエネルギーが高い領域で通常よりイベントが多く、これらの原因をノイズと考えると135°の有効イベントに依然ノイズが混ざっている可能性はある。とはいえ、135°の有効イベント数が変わったところできれいに\(A - B \cos 2\phi \)でフィットできるようにならなければならない。したがって根本的な改善点にならないと考えられる。
図 6: 生のデータ
図 7: 500 以下切り捨て
図 8: 同時刻のみ
図 9: 有効なエネルギー領域のみ
図 10: 511keV の ADC カウント
図 11: A - B \cos 2\phi でのフィッティング
6.1.2 全体的なノイズ

例えば上での NaI と 2 つのプラシンは p-Ps 由来の正常なイベントを検知したとし、それと同時刻に 0° の NaI がノイズを検知し、p-Ps 由来のものは下の 2 つの NaI にも検知されなかったとする。これはエネルギーのカットをクリアすれば有効イベントに含まれてしまう。この例では上の検知と下の検知に相関がないイベントであるから、0° でなく他のφであっても同様に確認しやすく起こると言える。

他にも似たようなイベントはいくつか考えられるが、下のこれも φ 依存性がない1。したがってこれらのノイズは一定に全ての角度に関与する。その場合 A − B cos 2φ の A が本来よりも大きな値で得られていることになる。よって我々が得た κ は本来より小さな値である。今回は実際に測定しなかったので、測定して実際に κ の値を見積もるべきであった（と反省している）。測定方法としては、対称性から 0° に対して下の NaI にプラシンからくる 511keV のγ線を遮蔽するといった方法が考えられる。

6.1.3 1275keV の関

1275keV のγ線は p-Ps とほとんど同時に出る。これがプラシンで Compton 散乱を起こし、511keV の代わりに NaI へ入っていくのは欲しいイベントではない。1275keV が下の NaI へ入っていくのはエネルギーのカットから削れているが、逆に上の NaI のエネルギーを今回見ているのでそれらは削れていない。これも A を大きく測定してしまう方に働くので、多かれ少なかれ κ を小さくする要因である。上の NaI の ADC カウントを見て、エネルギーの観点からカットしてしまうとこれも解決する。

6.1.4 測定期間

測定期間を長くして相対誤差 ≈ 1/\sqrt{[有効イベント数]} が小さくなればより正確な値が得られるよう。

6.2 系統誤差

6.2.1 φ 由来の系統誤差

プラシンと NaI は大きさを持つので φ ごとのイベント数は φ の前後いくらかに入ってきたイベントを勘定していることになる。

まずは下の NaI の φ = 0°, 90°, 180° と上の NaI の場合は図 13 のようになっている。ところが 45°, 135° の 2 つはこの関係ないので、この点を考慮すると解析が困難になるのでそれも図 13 の関係にある場合についての考察を与える（どのように実験することは時間が許せば可能である）。上下の NaI の角度の幅を考慮すると、例えば φ = 90° に実質 φ = 60° のイベントが入ってしまうこともあり得る2。

1 ただし p-Ps 由来のイベントがプラシンを通らずに NaI に入ることがないように鉛で遮蔽したので、そのようなイベントは考えない。
2 装置をもっと工夫するべきかもしれない。例えば鉛で NaI の断面積を減らすこと。
そこでこれによる影響を考えたい。φ方向の NaI 入るイベント数は理想的には \(P(\phi) \propto A - B \cos 2\phi \) である。角度の幅を踏まえて実際に得られるイベント数は

\[
(P(\phi)) = \int_{-\phi}^{\phi} d\phi' \rho(\phi')(A - B \cos(2(\phi' + \phi)))
\]

と何らかの重み付き平均になる。ここで \(\rho \) は規格化してあるものとする。昨年度の「ベルの不等式班」のレポートでは \(\rho \) を線形近似していたが、今回は上記 NaI についても考慮し、より \(\phi' \approx 0 \) 周りが主要になると考えられる。そこでパラメータ \(\sigma \) で重みをガウス分布に近似してみたい。

\[
\rho(\phi') = \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(-\frac{\phi'^2}{2\sigma^2}\right).
\]

今回のセットアップでは \(\delta\phi \approx 0.175\pi \) であるので、

\[
\sigma \leq \frac{\delta\phi}{2\sqrt{2}} \approx 0.195
\]

を課して (\(\phi' = \delta\phi \) で \(\phi' = 0 \) の 1/2 倍以下であることを要請), 積分区間を \(-\infty < \phi' < \infty \) と近似する:

\[
(P(\phi)) = A - \frac{B}{\sqrt{2\pi}\sigma^2} \int_{-\infty}^{\infty} d\phi' \cos(2(\phi + \phi')) \exp\left(-\frac{\phi'^2}{2\sigma^2}\right)
\]

\[
= A - Be^{-2\sigma^2} \cos 2\phi.
\]

ここで

\[B' = Be^{-2\sigma^2}\]

とすると,

\[
\kappa' = \frac{B'}{A}(\gamma - 1)^2
\]

こそ我々の手入れた \(\kappa \) の値 \(\approx 0.490 \) なのであり。本来の \(\kappa \) は式 (38) と式 (39) から

\[
\kappa = \kappa'e^{2\sigma^2} \approx 0.490 \cdot e^{2\sigma^2}
\]

であると言える。\sigma が大きいほど真の \(\kappa \) は大きいので、式 (35) から \(\kappa \) を大きく見積もると

\[
\kappa \sim 0.529
\]

である (依然ベルの不等式は破らない)。
6.2.2 θ由来の系統誤差

θ方向の誤差は、

1. p-Ps生成後プラシンに入る過程

2. プラシンからCompton散乱でNaIに入る過程

の2つで起こる。1つ目はp-Psから出る2つのγ線が正反対に出ることから上と下で同じだけの誤差を生む。ところが2つ目はそれぞれが独立に誤差を生んで良い。最終的な90°周りのθの幅は2つが複雑に関わって解析が難しい。やはりθ方向の誤差が無視できるように工夫すべきだったと言える。例えばプラシンを小さくし、NaIの断面積を線方向に小さくするように鉛を配置するなどと考えられる。この場合有効イベント数は小さくなるので時間を長く取らねばならない。

7 結論

本実験ではベルの不等式が成立し、隠れた変数理論を支持する結果となった。しかし、隠れた変数理論を支持するなら \((\alpha\beta) = -\kappa \cos 2\phi \) という仮定を見直さなければならないほどにうまくフィッティングできていない。また実験そのものもいくつか反省すべき点があり、正しい結果が得られているとは言えない。

8 謝辞

指導教官の市川さん、TAの末野さん1年間お世話になりました。またTAの潘さんには前年にお世話になりました。みなさんありがとうございました。

p.s. 量子振動班のみんな、線源を長く使わせていただいてありがとうございます。