2008年度課題研究P1

Double Beta Decay

木河達也 福田泰嵩

平成 21 年 4 月 8 日

概要

この実験では CdTe(カドミウムテルル)を使って、ニュートリノレスのダ ブルベータ崩壊を探した。153 時間、測定をしたところ、ニュートリノレス のダブルベータ崩壊かもしれない現象が1つ観測された。ここからニュート リノの寿命 $T_{0\nu}$ と有効質量 $< m_{\nu} >$ を

$$1.2 \times 10^{23} < T_{0\nu} < 6.7 \times 10^{23} \text{ [year]}$$
 (1)

$$22.5 < < m_{\nu} > < 53.6 \, [eV] \tag{2}$$

と見積もった。

目 次

第1章	理論	3
1.1	Introduction	3
1.2	Double Deta Decay	3
	1.2.1 Majorana	3
	1.2.2 2ν mode \ldots \ldots \ldots \ldots \ldots \ldots \ldots	4
	1.2.3 0ν mode	5
第2章	実験の原理	6
2.1	CdTe	6
2.2	FADC	7
2.3	Coplanar Grid Technique	8
2.4	トリプルコインシデンス	10
第3章	下準備	12
3.1	Coplanar Grid Technique はうまくいっているのか \ldots	12
3.2	電圧差の決定および CdTe のキャリブレーション	13
3.3	NaIのキャリブレーション	15
第4章	本実験	17
4.1	実験装置	17
4.2	セットアップ	18
第5章	結果	20
第6章	考察	26
6.1	Coplanar Grid Technique for CdTe	26
6.2	Energy Spectrum and Resolution	26
6.3	Experiment of Double Beta Decay	28
第7章	謝辞	31

第1章 理論

1.1 Introduction

本実験の目的は、neutrino-less Double Beta Decay 事象の観測と、neutrinoの質量に対して制限を与えることである。

これまで多くの実験では neutrino-less Double Beta Decay 事象は発見され なかったとされており、質量の上限が与えられていただけである。しかし、 Heideberg-Moscow グループの1例だけが neutrino-less を発見したと報告し、 その有効質量を 0.24eV < < m > < 0.58eV と見積もっている。今回の実 験の意義は、こうした 2 つの見解のどちらが正しいのかに結論を出すことだ けではない。

neutrino-less 事象が観測されなかった場合、neutrinoの質量に上限を与えることができる。

一方で、neutrino-less Double Beta Decay 事象が観測されれば、neutorino が majorana 粒子であることがわかる。neutorino が majorana 粒子であれば、 その波動関数は majorana 位相という複素位相を持ち、CP violation につい てもわかる。次に、neutrino 振動からは質量の2乗の差しかわからなかった のだが、neutrino 質量の絶対値を求めることができる。さらに、majorana 粒 子であったなら lepton 数は保存しないので、Standard Model を超えた理論 が必要となる。

ニュートリノの寿命や質量を計測できるだけでなく、現在の宇宙に反物質 がほとんど存在しないことを理解する手がかりになるかもしれない。

1.2 Double Deta Decay

neutrino-less Double Beta Decay で重要な概念となる majorana 粒子と Double Beta Decay について以下の3節で説明する。

1.2.1 Majorana

spin1/2の Lagrangian の中で Lorentz invariance となる mass term には次 の 2 つがある。

1. Dirac 粒子 $\bar{\psi}\psi$

U(1) global gauge 変換に対して不変なので、電荷が保存される。電荷 をもつ粒子、中性粒子共に Dirac 粒子となり得る。また、生成消滅演算 子に置き換えて考えてみると、 ψ が粒子(反粒子)を消滅(生成)し、 $\bar{\psi}$ で反粒子(粒子)を生成(消滅)するので、lepton 数は保存される。

2. Majorana 粒子 $\bar{\psi}C^{-1}\psi$ Majorana 粒子の場合は粒子と反粒子の区別がつかない。そのため、中 性粒子のみが Majorana 粒子となり得る。lepton 数は保存されない。

1.2.2 2 ν mode

Double Beta Decay とは原子核内で Beta 崩壊を 2 回起こす反応である。

1回のBeta崩壊がエネルギー的に禁止される場合に起こる。

さらに、Double Beta Decay と呼ばれるものにはいくつか種類がある。 ・ β^- 崩壊 2 回

$$N_i(A, Z-2) \to N_f(A, Z) + 2e^- + 2\bar{\nu}_e$$
 (1.2)

・electron capture 1回、 β^+ 崩壊1回

$$e^- + N_i(A, Z) \to N_f(A, Z-2) + e^+ + 2\nu_e$$
 (1.3)

 \cdot electron capture $2\,\square$

$$2e^- + N_i(A, Z) \to N_f(A, Z - 2) + 2\nu_e$$
 (1.4)

1.2.3 0 ν mode

0 ν mode とは、doble Beta Decay で neutrino が放出されない反応のこと である。

$$N_i(A, Z-2) \to N_f(A, Z) + 2e^-$$
 (1.5)

0 *v* mode が起きるためには以下の2条件を満たす必要がある。

1. majorana 粒子

2 . helicity の一致

放出された neutrino と吸収された neutrino が同じ helicity をもっていれば、 neutrino 同士の線をつなぐことができる。

この2条件を満たせば、neutrino と anti-neutrino が対消滅し、0 ν mode が起こる。

第2章 実験の原理

今回の実験では、CdTe(カドミウムテルル)を崩壊核として用いた。CdTe は以下のような、電子を1つ捕獲し、1つの陽電子を放出するダブルベータ 崩壊を起こす。

$$e^{-} + N_i(A, Z) \to N_f(A, Z - 2) + e^{+} + 2\nu_e$$
 (2.1)

しかしニュートリノレスのダブルベータ崩壊の場合は以下のようになる。

$$e^- + N_i(A, Z) \to N_f(A, Z - 2) + e^+$$
 (2.2)

この崩壊によって発生するエネルギー(Q値)は一定であり、今回の場合は 1.7MeV である。このエネルギーは式2.1の反応では、陽電子と2つの電子 ニュートリノに様々な割合で分配されるので陽電子のエネルギーはQ値以下 の様々な値になる。しかし式2.2の反応ではこのエネルギーはすべて陽電子 の運動エネルギーとなる。よってダブルベータ崩壊によって発生した陽電子 を検出し、その中でQ値にあたる1.7MeVのエネルギーを持ったものをがあ ればニュートリノレスのダブルベータ崩壊を観測できたといえる。

2.1 CdTe

今回の実験で崩壊核として用いた CdTe のメリットとしてはまず常温で半 導体検出器として使用できることが挙げられる。今回の実験では崩壊核から 放出された陽電子のエネルギーを測定する必要がある。CdTe は合成物半導 体なので、崩壊核と同時に半導体検出器の材料として使うことができ、また エネルギーギャップが比較的大きいため、常温で使用することができる。また これまで述べたような陽電子崩壊を起こすことも大きなメリットである。な ぜこの点がメリットなのかということについては、2.4 で述べる。一方、デメ リットとしては、まず分解能が他の半導体検出器と比べて低いことが挙げら れる。先ほど述べたようにエネルギーギャップが大きいことから、常温で使う ことができるというメリットがある一方、このデメリットが発生してしまう ことは避けられない。次にバックグラウンドに弱いことが挙げられる。CdTe のQ値は他のダブルベータ崩壊核と比べると低く、そのエネルギー領域には 様々な、自然放射線などのバックグラウンドが存在する。今回の実験ではQ 値付近でのデータが重要になるので、その領域に様々なバックグラウンドが 存在することは大きなデメリットである。ニュートリノレスのダブルベータ 崩壊は、もし起きるとしても非常に稀な現象で、様々なバックグラウンドの 中から、その現象のみを見つけだすことができなければならないので、いず れにしてもバックグラウンドに対して何らかの対策をしなければならない。 今回の実験ではトリプルコインシデンスをとることで、バックグラウンドを 排除した。トリプルコインシデンスについては 2.4 で述べる。さらに CdTe 中でホールの易動度が低いということもデメリットの1つとして挙げられる。 なぜこの点がデメリットなのかということと、この解決策として今回の実験 で用いた Coplanar Grid Technique という実験技術については 2.3 で述べる。

2.2 FADC

CdTe からのアナログ信号をデジタル数値化するのに、今回の実験では FADC(Flash Analog Digital Converter)を用いた。一般に ADC と呼ばれ るものには、パルスハイト ADC や積分型 ADC などがある。それらはゲート が開いている間に前者は入力パルスの高さを測定することで、後者は入力パ ルスを時間積分することで、それぞれアナログ信号である入力パルスをデジ タル化する。しかしそれらの ADC では、入力パルスの高さ、もしくは時間 積分された値のみしか知ることができない。それに対し FADC はスタート信 号が入ってからストップ信号が入るまでの間、高速にアナログ信号をデジタ ル化し、時系列データとすることが可能で、図 2.1 のように入力パルスの波 形を読み取ることができる。今回の実験ではニュートリノレスのダブルベー

^{🛛 2.1:} FADC

タ崩壊と思わしき事象が観測されたとき、実際に観測された波形を見ること

で、それが本当にニュートリノレスダブルベータ崩壊による信号なのかということを確かめるために FACD を用いた。しかし FADC 自体はパルスハイト ADC や積分型 ADC のように入力された1つのパルスに対しその相対的な大きさを出力してはくれない。今回の実験では FADC がよみだしたパルスの波形情報の、パルスが入る前の時間領域とパルスが入った後の時間領域で 波形を0次フィットしてその高さの差をパルスの相対的な大きさとした。

2.3 Coplanar Grid Technique

半導体検出器では、その空乏層に粒子線が入射した時に電子とホールの電 離が起き、バイアス電圧によって、それらを電極に収集し、パルス電流とし て、その電流を読み取ることでエネルギーを測定する。電子は陽極に、ホール は陰極にそれぞれ収集される。電子は易動度が高く、半導体検出器の中のど こで電離が起きても、ほぼ確実に陽極まで収集される。しかしホールは易動 度が陽子に比べて低い。CdTe中では特に低いため、電離が起きた場所が陰極 から遠い場合、陰極までたどり着かないことがある。そのため、半導体検出器

🗷 2.2: Coplanar Grid Technique

によって、とれるデータは実際に測定したい粒子線のエネルギーだけでなく、 電離が起きた場所にも依存してしまう。そこで Coplanar Grid Technique を 用いた。Coplanar Grid Technique ではバイアス電圧の異なる 2 つの電極を 陽極側に設置する。その2つの電極の電圧差が十分であれば粒子線によって 電離された電子は、ほぼすべてが電圧の高いほうの陽極に収集される。電離 によって発生した電子が陽極付近まで近づいて行く時、両方の電極に対して 電子は近づいていくことになるので、両方の電極で同じようにプラスのパル ス電流が流れる。しかし電子が陽極付近まできて、電圧の高いほうの電極に 近づいていく時、電圧が高いほうの陽極にはこれまで同様に電子が近づいて きているのでプラスのパルス電流が流れるのに対し、電圧の低いほうの陽極 からは電子は遠ざかっていくので、こちらにはマイナスのパルス電流が流れ る。よってこのときの電子によってそれぞれの陽極に送られるパルス電流は、 電圧が低いほうは図 2.2 の CH1 のように、電圧が高いほうは図 2.2 の CH2 の ようになる。しかし実際に観測されるデータはこれらにホールの影響を加え たものになり、図 2.2 の CH1 や CH2 のような電子の効果のみからなるデー タは実際に観測することはできない。このホールの影響は両方の陽極に同じ ように現れる。よって一方の陽極で観測されたデータから、もう一方の陽極 で観測されたデータを引けば、ホールの影響を打ち消すことができ、図 2.2 の CH2-CH1 のような電子の効果のみからなるデータを実際に観測すること ができる。こうすることでデータはホールの影響を受けず、エネルギーのみ に依存したものになる。今回の実験では陽極側に図 2.3 のように 3 種類の極 盤からなるグリッドを設置した。2.3の陽極1、陽極2についてはこれまで述

図 2.3: グリッド

べたような、電圧の異なる2つの陽極である。ガード電極というものは、陽 極の壁から入ってくるノイズをこの電極で拾い、陽極1、陽極2に入ってし まうことを防ぐためのものであり、この電極からの信号は観測しない。

図 2.4: 実際の写真

2.4 トリプルコインシデンス

章の冒頭でも述べたように今回、崩壊核として用いた CdTe のダブルベー タ崩壊は以下のようになる。

$$e^- + N_i(A, Z) \to N_f(A, Z-2) + e^+(+2\nu_e)$$
 (2.3)

CdTe は同時に半導体検出器として用いることで、この崩壊で発生した陽電 子のエネルギーを、測定することができる。この陽電子は CdTe 中で電子と ホールを電離させることに運動エネルギーを使い、やがて運動エネルギーを 失う。その後、陽電子は原子軌道上の電子と対消滅を起こし、2つの 線を 発する。運動量保存則よりこの2つの 線はバックトゥーバックに発せられ、 それらの 線は等しいエネルギーを持っていると言える。またエネルギー保 存則よりそのエネルギーは電子のエネルギーにあたる 511keV であることが わかる。Cdの周りに NaI シンチレータのような放射線検出器をセットして おけば、図 2.5 のように、この 2 つの 線を検出し、そのエネルギーを測定 することができる。よってニュートリノレスのダブルベータ崩壊を観測した ことを言うための条件に、これまで述べたような Q 値にあたる 1.7MeV のエ ネルギーを持った粒子線が半導体検出器で観測されるという条件に加え、そ のとき同時に2つの放射線検出器で511keVのエネルギーを持った粒子線が 観測させるという条件を課すことによって、バックグラウンドを十分に排除 することができ、真のダブルベータ崩壊のみを観測することができると思わ れる。今回の実験では図 2.6 のように CdTe を 4 つの NaI で囲み、この 4 つ の NaI のうち 2 つの NaI で同時に粒子線が検出され、さらに同時に半導体検 出器でも粒子線が検出された時だけ、その CdTe からの信号と NaI からの信 号のデータを取るようにセットアップをして、あとでそのデータの中から、2 つの CdTe で 511KeV の粒子線が検出されていて、さらに同じ時に半導体検

図 2.5: トリプルコインシデンス

出器で1.7MeVの粒子線が観測されている事象を探した。

図 2.6: トリプルコインシデンスのセットアップ

第3章 下準備

3.1 Coplanar Grid Technique はうまくいってい るのか

まず Coplanar Grid Technique が本当に上手くいっているのかということ を確認するために、Cs(セシウム)の発する 線を、CdTe で検出し、その信 号をオシロスコープで観測した。その結果、図 3.1 や図 3.2 のようなデータ が得られた。

図 3.1: Coplanar Grid Technique テスト1

図 3.1 では、最初に両方の陽極の電圧が一緒に上がっている。これは 2.3 で 述べたように電子が陽極付近まで移動する様子である。その後、バイアス電 圧の高いほうの陽極は電圧が上がり続けているのに対し、低いほうの陽極は 下がっている。これは 2.3 で述べたように陽極付近までやってきた電子が電 圧の高いほうの陽極に収集される様子である。一方では図 3.2 では両方の陽 極の電圧が一緒に上がることなく、いきなりバイアス電圧の高いほうの陽極 は電圧が上がり、低いほうの陽極は下がっている。これは電離が陽極付近で 起きたため 2.3 で述べたような電子が陽極付近まで近づく過程がないためだ と思われる。また図 3.1、図 3.2 ともに電子の移動が終わった後も、少しずつ 電圧が上がっている。これがホールの移動による効果だと思われる。ホール

図 3.2: Coplanar Grid Technique テスト2

は電子に比べて易動度が低く、陰極に向かってゆっくり移動するため、この ようなゆるい傾斜になるものだと思われる。この効果は両方の陽極にあらわ れているが、その差をとることでこの効果をキャンセルできている。これら から Coplanar Grid Technique がうまくいっていることを見て取ることがで きる。

3.2 電圧差の決定および CdTe のキャリブレーショ ン

Coplanar Grid Technique では 2 つの陽極間に電圧差を与えてやる必要が ある。今回の実験において適切な電圧差を決定するのに、電圧の高いほうの 陽極のバイアス電圧を 160V に固定し、電圧の低いほうの陽極のバイアス電圧 を 130V、140V、150V と変えたときの検出器の分解能を調べた。電圧が高い ほうの陽極のバイアス電圧を 160V としたのは、電離で生まれた電子やホー ルを確実に極盤まで収集するためには電圧は高いほうがいいが、これ以上高 いと放電の心配があるからである。電圧が低いほうの陽極のバイアス電圧の 下限 130V までとしたのも同様に、2 つの陽極間に電圧差がかかりすぎていて も放電の心配があるからである。この実験では Cs の発する 線を、CdTe で 検出し、その信号を FADC でデジタル数値化したものを PC で読み取った。 上記の 3 種類のバイアス電圧に対してそれぞれ 10000 個のデータを取り、そ の結果をヒストグラム化したものが図 3.3、3.4、3.5 である。

いずれにおいても 3~12mV の領域に多くのデータがある。Cs の発する 線のエネルギーは 622keV でこの領域ではコンプトン散乱の効果が大きく、こ れらのデータはコンプトン散乱によるものと思われる。今回の実験ではこれ

⊠ 3.3: CH1:130V、CH2:160V

⊠ 3.4: CH1:140V、CH2:160V

⊠ 3.5: CH1:150V、CH2:160V

-1							
bias	a	b	с	分解能			
130V	52.27	1.321	14.60	0.09049			
140V	35.86	1.626	14.22	0.1143			
150V	43.31	1.352	14.56	0.09291			

表 3.1: フィッティングの結果

らのデータは求めているものではないので、除外するために 13mV 以上の領 域でガウスフィットをした。関数を

$$f(x) = a \exp(-\frac{(x-c)^2}{2b^2})$$
(3.1)

として、フィッティングし、 $\frac{b}{c}$ から分解能を求めた結果が表 3.1 である。

電圧が低いほうの陽極のバイアス電圧が130Vのとき最も分解能が良くなった。よって測定の時のバイアス電圧は高いほうを160V、低いほうを130Vとすることにした。またこの130Vの時のフィッティングで出た c の値から CdTe キャリブレーションをした。

3.3 NaIのキャリブレーション

NaI のキャリブレーションにおいてもこれまで同様に Cs の 線を観測した。10000 個のデータを取り、それをヒストグラム化したところ図 3.6~3.9 のようになった。まず、いずれも約 1000keV 以下の領域で多くのデータが観測されているがこれは CdTe を用いた時と同様にコンプトン散乱によるものであり、求めているデータは 1500~2000keV の辺りにピークがあるものであ

🗷 3.6: NaI1

🕱 3.7: NaI2

🗷 3.8: NaI3

🕱 3.9: NaI4

ると思われる。コンプトン散乱の影響がほとんど現れていない領域で CdTeを用いた時と同様に

$$f(x) = a \exp(-\frac{(x-c)^2}{2b^2})$$
(3.2)

でガウスフィットをした。またそれぞれの NaI のペデスタルを知るために今度は線源なしで何も検出されていない時のデータを取った。結果は表 3.2 のようになり、このペデスタルとフィッティングでの c の値からキャリプレーションをした。

NaI	a	b	с	ペデスタル
NaI1	1.009e+02	4.191e+02	$1.957e{+}03$	63
NaI2	1.265e+02	3.627e + 02	$1.679e{+}03$	102
NaI3	1.170e+02	$3.792e{+}02$	$1.713e{+}03$	86
NaI4	1.116e+02	3.897e + 02	1.840e+03	63

表 3.2: NaI のキャリブレーション

第4章 本実験

4.1 実験装置

今回の実験では以下のような実験装置を用いた。

• CdTe(カドミウムテルル)

ダブルベータ崩壊の崩壊核としての役割のほかに、半導体検出器として の役割がある。エネルギーギャップが大きいので常温で使用することが できる。一方で分解能が他の半導体検出器と比べて低いこと、またバッ クグラウンドに弱いことなどが欠点として挙げられる。

• NaI シンチレータ

放射線エネルギーが吸収されて蛍光を発する現象 (シンチレーション) によって、放射線のエネルギーを測定する。

• bias supply

電極にバイアス電圧を与える。

• プリアンプ

検出器からの出力パルスのシグナルレベルやインピーダンスを変換し、 後段の装置が満足に動作できる値にする。

• divider

信号を2つに分ける。

• discriminator

設定したしきい値 (threshold) を超えるアナログパルスを標準ロジック パルスに変換する。

• fan in/fan out

複数の入力パルスを足し合わせて出力するモジュールだが、今回の実験 ではこの装置の反転機能を使い、パルスを反転させるのに用いた。

• multiplicity logic

様々なロジックを組むことができるロジックモジュール。今回の実験で は4つの入力信号のうち2つで同時にパルスが検出されたときにだけ、 パルスを出力するようにセットした。

 $\bullet\,$ gate generator

入力ロジック信号に対して、一定の時間幅を持つディレイを出力する。

• ADC(Analog Digital Converter)

ゲートが開いている間、入力されたアナログパルスを時間積分し、その 値をデジタル数値に変換する。

• FADC(Flash Analog Digital Converter)

2.2 で述べたように、スタート信号が入ってからストップ信号が入るま での間、入力されたアナログ信号を高速でデジタル数値化し、時系列 データにする。

4.2 セットアップ

セットアップは図 4.1 のようになる。CdTe や NaI からの信号を divider で 2つに分け、一方をコインシデンスを取り、ADCのゲートや FADCのスター ト、ストップの信号を作るために、もう一方を実際に測定させるデータのた めの信号として用いた。CdTeからの信号はそのままでは小さすぎるのでプ リアンプで増幅させた。また discriminator はマイナスパルスに対してしか、 動作することはできない。NaIからの信号はマイナスパルスであるが、CdTe からの信号はプラスパルスであるため、fan in/fan outの反転機能を使い、反 転させ、マイナスパルスにしてから discriminator に入力した。discriminator の threshold は CdTe で 1.7MeV の粒子線が観測された時に出ると想定させ るパルスの高さに比べて、十分低くに設定した。そのせいで今回の実験で求 めていないようなパルスが threshold を超えてしまい、余計なデータが多く 観測されてしまう可能性もあるが、それらのデータは解析において省くこと ができる。測定されるデータのための信号は十分にディレイをかけ、CdTeか らのデータのための信号が FADC のためのスタート信号とストップ信号の間 に入るように、また NaI からのデータのための信号が ADC のためのゲート の間に入るようにした。

図 4.1: セットアップ

第5章 結果

153 時間、測定したところ 198 個のデータが測定された。それらのデータ を解析し、エネルギーを計算したところ表 5.1 のようになった。

表 5.1: 観測されたデータのエネルギー

	れのここ 観測 こうのこう クリンエネルト						
CdTe(keV)	NaI1(keV)	NaI2(keV)	NaI3(keV)	NaI4(keV)			
664.2584066	27.25765576	283.587825	257.6693301	20.30163196			
2890.740728	24.63041183	384.5592898	360.5076829	16.45132245			
4047.840151	1344.820486	497.7577679	1565.513215	1433.365222			
1785.174176	510.6705385	40.23081801	37.84757222	556.8947665			
1278.355247	28.24287223	266.2333545	268.3736939	20.6516601			
2837.084684	575.0380148	623.9720989	373.8881377	1433.365222			
2086.76728	779.6346357	285.1655041	1565.513215	295.0737198			
55.45241071	32.18373812	0.788839569	213.7049785	167.3134496			

CdTe(keV)	NaI1(keV)	NaI2(keV)	NaI3(keV)	NaI4(keV)
29.11707596	24.30200634	35.4977806	30.20159803	16.10129432
49.1576511	24.30200634	33.92010146	30.20159803	16.10129432
6.895741484	28.57127772	38.65313887	34.78918254	21.70174451
14.81756937	24.63041183	35.4977806	31.73079287	17.851435
33.64268132	57.47096093	70.60114141	92.89858636	14.70118177
32.61206662	24.63041183	37.46987952	33.25998771	20.30163196
43.91935165	199.0137276	93.87190869	64.99078058	186.9150253
13.7269761	8.866948258	35.4977806	27.14320836	20.6516601
15.86095728	26.92925026	39.04755866	27.14320836	23.10185706
1074.111978	460.4244984	37.46987952	33.25998771	234.8688801
1343.84467	23.31678986	324.2130628	336.0405655	16.45132245
629.1256593	314.6124604	37.07545973	34.40688384	232.068655
1331.408942	635.1362196	34.31452124	39.37676706	781.9628588
1247.396223	28.57127772	655.9201015	748.9231715	20.6516601
956.9487088	652.2133052	40.23081801	35.93607867	620.9499156
785.8987088	268.6356917	39.04755866	34.40688384	641.9516038
1326.893462	650.8996832	35.89220038	32.877689	775.3123241
1261.117816	517.2386484	39.04755866	34.78918254	745.9099606
1776.22011	715.2671595	37.46987952	34.78918254	1065.135622
1291.145549	329.062302	33.92010146	604.7965581	17.851435
1486.340769	720.5216473	40.62523779	34.78918254	945.776027
646.3118269	1344.820486	369.9657578	169.3583282	1433.365222
1677.742473	24.30200634	578.2194039	794.7990166	23.4518852
947.8921154	568.469905	33.92010146	32.877689	572.2960045
603.3015522	307.0591341	289.8985415	65.37307929	17.851435
1784.828146	892.9345301	35.4977806	32.877689	1190.795723
757.6267582	565.5142555	606.6176284	32.877689	18.90151941
2181.327514	1344.820486	905.1934052	285.5771358	1433.365222
780.1229945	664.0359029	39.04755866	35.93607867	679.7546427
654.3004258	1344.820486	452.3994927	1565.513215	79.10635903
768.0632005	796.7117212	35.4977806	32.877689	800.51435
1749.879093	24.63041183	335.6512365	274.4904733	16.45132245
1000.954354	523.8067582	37.07545973	32.877689	716.1575689
750.4925549	562.8870116	38.65313887	35.93607867	962.5773776
1667.669148	692.9355861	60.7406468	102.0737554	1214.597636
3212.553104	1316.906019	68.62904249	45.1112477	1433.365222
1645.121648	720.8500528	33.92010146	31.73079287	881.3708497
1913.807706	644.3315734	38.65313887	34.78918254	676.9544176

CdTe(keV)	NaI1(keV)	NaI2(keV)	NaI3(keV)	NaI4(keV)
1552.099327	86.04223865	1615.149017	1250.116779	31.50253236
957.5596016	216.0908131	1177.737476	1181.303012	20.6516601
457.9133242	249.2597677	35.4977806	33.25998771	237.6691052
1813.228255	28.24287223	292.65948	291.3116165	20.30163196
2192.16125	32.18373812	1470.002536	290.1647203	157.8626899
2643.008723	24.63041183	974.2168675	442.7019053	16.45132245
101.8238777	588.1742344	35.4977806	42.05285802	620.9499156
3155.983571	1344.820486	968.3005707	74.54824831	1433.365222
2064.467555	367.4857445	39.04755866	35.93607867	1263.601576
1886.586662	739.2407603	38.65313887	48.55193608	1433.365222
1245.234602	469.6198522	37.07545973	33.25998771	297.5239167
992.3463187	812.4751848	39.04755866	34.78918254	542.893641
884.3720742	393.4297782	37.07545973	274.4904733	16.45132245
1892.447816	310.6715945	65.47368421	36.31837738	1429.164885
806.9638324	268.6356917	34.31452124	31.34849416	431.9347214
1235.174093	1344.820486	467.7818643	126.5408728	1433.365222
2326.835357	627.2544879	37.07545973	253.4640443	286.6730445
945.4015522	27.25765576	283.1934052	309.6619545	19.25154755
1477.066305	244.0052798	37.46987952	33.25998771	444.5357344
1932.647129	850.8986272	37.07545973	34.78918254	767.9617333
1995.176071	314.6124604	38.65313887	34.40688384	325.5261677
1508.503791	664.0359029	33.92010146	31.73079287	699.3562183
1695.031168	585.5469905	268.994293	95.95697603	665.7535172
1764.950632	364.8585005	35.89220038	31.73079287	570.895892
1191.347871	644.3315734	84.40583386	109.3374309	380.1305571
1484.725962	24.63041183	852.7355739	710.6933006	17.851435
1260.160893	238.750792	35.89220038	32.877689	242.9195273
1043.071786	1344.820486	221.6639188	736.6896128	1433.365222
1097.061044	25.6156283	398.758402	279.0780578	17.50140687
1414.802225	896.875396	239.0183893	31.73079287	1083.337085
1234.806703	409.5216473	40.23081801	35.93607867	451.5362971
46.70211813	40.3938754	54.82435003	338.7166564	140.7113112
66.03410027	66.66631468	27.60938491	167.4468347	0.700056275
66.50273626	15.10665259	32.34242232	28.6724032	13.65109736
1667.549533	1344.820486	176.3056436	312.7203442	1433.365222
26.30192788	33.82576558	719.027267	1051.703749	164.8632527
91.33916209	22.98838437	39.04755866	31.73079287	12.25098481
1753.091621	817.7296727	40.23081801	35.93607867	1234.54924

CdTe(keV)	NaI1(keV)	NaI2(keV)	NaI3(keV)	NaI4(keV)
602.5411401	351.3938754	38.65313887	34.78918254	245.7197524
1261.583462	542.1974657	39.04755866	33.25998771	625.5002814
14.0880864	61.41182682	128.5808497	83.72341733	30.10241981
1380.404258	360.5892291	38.65313887	36.31837738	456.0866629
1472.140714	365.843717	38.65313887	36.31837738	650.3522791
74.96851511	21.67476241	35.4977806	31.34849416	13.65109736
5.093265797	20.36114044	34.31452124	36.31837738	16.10129432
2163.02636	28.57127772	590.840837	733.2489244	19.25154755
1467.992624	24.30200634	308.4362714	420.1462815	16.45132245
69.55463736	25.6156283	29.18706405	31.34849416	9.450759707
34.8428081	20.36114044	26.42612555	24.08481868	12.25098481
123.4182995	22.98838437	35.4977806	31.34849416	15.0512099
1439.93	755.9894403	39.04755866	204.5298095	387.1311199
17.40937843	26.92925026	43.78059607	33.25998771	20.30163196
60.66251511	21.67476241	22.8763475	30.20159803	16.45132245
72.71803709	32.51214361	19.72098922	50.08113092	13.30106922
89.54578571	20.68954593	26.03170577	32.877689	10.85087226
67.89070192	23.31678986	29.18706405	30.20159803	16.45132245
27.68775755	24.30200634	31.15916297	34.78918254	16.10129432
1849.322198	57.47096093	586.5022194	638.4388445	20.30163196
1234.123187	388.1752904	51.66899176	181.5918869	1201.996624
1549.143118	48.27560718	458.7102093	1565.513215	26.2521103
128.7804863	25.6156283	311.5916297	302.0159803	17.851435
1486.614176	1344.820486	272.1496512	189.2378611	647.9020822
1565.850824	26.92925026	1121.335447	634.2335587	34.30275746
747.1604121	248.9313622	38.65313887	34.78918254	417.9335959
1246.840865	1155.330517	35.89220038	40.90596189	1087.537423
618.702033	567.156283	39.04755866	35.93607867	248.5199775
1258.242775	476.187962	37.07545973	39.37676706	1433.365222
2412.813187	898.189018	37.07545973	1565.513215	27.65222285
2089.321923	483.0844773	35.89220038	32.877689	696.5559932
2334.691525	589.1594509	33.92010146	31.73079287	796.3140124
2278.912308	24.30200634	681.1629677	750.4523663	16.10129432
991.6115385	357.9619852	37.07545973	33.25998771	265.6713562
1725.541635	612.8046463	38.65313887	36.31837738	692.3556556
1137.238997	279.1446674	38.65313887	34.78918254	306.2746201
1028.641044	686.3674762	34.31452124	32.877689	606.9487901
641.4973077	594.4139388	39.04755866	36.31837738	791.7636466

CdTe(keV)	NaI1(keV)	NaI2(keV)	NaI3(keV)	NaI4(keV)
48.69798626	27.25765576	37.46987952	34.40688384	19.25154755
105.2705096	16.74868004	35.4977806	29.81929932	17.50140687
10.97005508	25.94403379	38.65313887	31.73079287	19.25154755
30.82022816	15.10665259	35.4977806	25.23171481	16.45132245
0.092647669	20.36114044	32.73684211	28.6724032	15.0512099
82.49787637	19.04751848	35.4977806	27.14320836	16.10129432
57.71570467	24.30200634	37.46987952	30.20159803	18.90151941
76.23558379	20.68954593	33.92010146	29.81929932	16.45132245
38.09609025	25.6156283	37.07545973	33.25998771	17.50140687
43.93601236	91.2967265	0.788839569	244.2888752	0.700056275
1945.377624	430.5395987	35.4977806	32.877689	522.9420371
1293.37125	32.18373812	414.1407736	300.4867855	1433.365222
1441.015082	28.24287223	643.2986684	666.3466503	20.6516601
248.5966538	451.2291447	37.07545973	33.25998771	245.7197524
1393.250096	25.94403379	469.7539632	588.3577136	18.90151941
512.4323077	224.3009504	38.65313887	66.51997541	227.8683174
1691.259011	623.6420275	34.31452124	31.73079287	742.7597074
1949.876016	677.1721225	34.31452124	32.877689	1090.337648
1222.255632	574.7096093	35.4977806	33.25998771	1433.365222
864.2254258	462.0665259	35.89220038	31.34849416	241.5194147
4730.831181	25.6156283	822.7596703	288.2532268	73.50590884
910.448228	356.6483633	37.46987952	33.25998771	244.669668
1256.653599	456.4836325	37.46987952	34.40688384	534.4929657
1798.639451	1344.820486	223.241598	60.78549478	923.7242544
2462.338228	928.4023231	1137.112238	33.25998771	69.30557119
29.71775879	0.656810982	720.6049461	940.0725261	206.8666292
63.10480495	29.55649419	31.15916297	52.75722188	16.45132245
913.8316346	28.24287223	285.1655041	308.5150584	20.30163196
1161.495288	29.55649419	673.274572	695.0190535	21.70174451
3000.043558	24.63041183	419.2682308	453.7885679	17.50140687
816.7082143	1344.820486	51.66899176	33.25998771	255.8705684
747.9720879	1203.93453	43.78059607	245.4357714	429.1344963
2089.347555	32.51214361	35.4977806	1109.813153	1276.202589
2875.904148	566.8278775	35.89220038	33.25998771	461.337085
2015.912253	599.9968321	34.31452124	31.73079287	834.1170512
1549.980426	24.63041183	302.1255549	340.62815	17.851435
613.054478	641.7043295	39.04755866	34.40688384	227.8683174
1295.033049	577.6652587	38.65313887	34.40688384	680.1046708

CdTe(keV)	NaI1(keV)	NaI2(keV)	NaI3(keV)	NaI4(keV)
2653.342637	25.6156283	53.24667089	1349.514444	623.7501407
1654.490096	640.719113	37.46987952	32.877689	683.9549803
777.1368819	589.1594509	37.07545973	60.40319607	288.073157
2930.888777	364.530095	1105.164236	42.43515673	29.0523354
5064.088187	29.88489968	625.9441978	629.6459742	21.70174451
1700.264341	28.57127772	672.8801522	450.7301782	19.25154755
1310.442074	521.1795143	39.04755866	35.93607867	454.6865504
540.1446291	1344.820486	1615.149017	267.2267978	1433.365222
5109.285714	554.0200634	131.736208	769.9496005	1433.365222
2323.396415	29.88489968	526.1559924	670.9342348	20.6516601
2170.84408	673.5596621	39.04755866	35.93607867	578.9465391
2146.002527	24.30200634	532.8611287	323.4247081	23.4518852
2494.343887	29.55649419	332.1014585	406.383528	20.30163196
2229.101044	682.4266103	35.89220038	31.34849416	732.9589195
4101.632898	40.0654699	1608.443881	1565.513215	66.85537423
2271.842184	27.25765576	316.7190869	33.25998771	1171.194147
1472.794327	58.78458289	35.4977806	269.9028888	657.70287
2733.749808	505.4160507	35.4977806	31.73079287	804.7146877
1629.328146	54.843717	1615.149017	722.5445605	91.70737198
45.4457294	25.6156283	35.89220038	31.34849416	17.50140687
47.17673489	25.94403379	40.62523779	30.20159803	12.25098481
3.971461456	27.25765576	38.65313887	31.73079287	13.30106922
1354.36228	499.8331573	39.04755866	34.78918254	229.2684299
1050.799794	24.30200634	436.2282815	519.1616472	17.50140687
4.143536731	25.6156283	35.89220038	32.877689	16.45132245
3192.162953	44.33474129	122.6645529	1565.513215	871.92009
96.16735165	749.4213305	34.31452124	241.2304856	140.7113112
2719.912871	25.6156283	878.3728599	663.2882606	19.25154755
1178.202995	26.92925026	1417.939125	675.1395206	20.6516601
560.5390522	215.1055966	37.46987952	34.78918254	234.518852
576.6700412	672.2460401	34.31452124	84.87031346	241.5194147
1419.920055	27.25765576	360.4996829	395.6791641	19.25154755
558.625206	177.0105597	37.46987952	34.78918254	171.8638154
2488.982555	28.57127772	818.4210526	880.4339275	21.70174451
3565.691896	306.7307286	37.46987952	401.4136447	24.85199775
719.5976099	1344.820486	253.2175016	94.04548248	699.3562183
1667.400014	425.2851109	34.31452124	31.73079287	643.7017445
1443.095536	496.2206969	35.89220038	33.25998771	234.518852

第6章 考察

CdTe に対して Coplanar Grid Technique が使えるかどうか、CdTe 半導体 が検出器としてどれほど良いものか、Double Beta Decay は観測されていた のか、neutrino の質量の上限について議論する。

6.1 Coplanar Grid Technique for CdTe

CdTe 半導体へ Coplanar Grid Technique を使って得られたデータについ て解釈する。

electron と hole の mobility ($v(速度) = \mu(易動度)E(電場)$)は文献値では $10^3 cm^2/Vs$ 、 $10^2 cm^2/Vs$ 程度である。また、電場は electron と hole に対し て同様にかかっているので、eletron の方が hole より速く動く。このことか ら、図の傾き a は electron と hole の動きを表しており、b は hole のみの動き を表している。c は電流が負に動いていることから、次の2つの原因が考えら れる。potential が分岐した先で反応が起き、低エネルギーの hole (electron) ができた場合、potential の坂を昇れない(下れない)ためであると思われる。 これは収率に影響を与え、2極の差をとると負になる。もう1つは、格子欠 陥に hole が吸収されてしまい、予測された hole の収率より少なくなることで ある。しかし陰極は1つであり、2つの陽極に同様に影響を与えるので、こ の場合は2極の差をとればその影響はなくなる。

また、FADC で得た図では、1ch だけ周期的ノイズがのっている。オシロ スコープで FADC にはいる前の信号を確認しても noise はのっていなかった ので、FADC 自身に問題がある。

オシロスコープで見る限り bias の高い側から低い側の差分には hole の影響が消えており、CdTe に対して Coplanar Grid Technique はうまくいって いる。

6.2 Energy Spectrum and Resolution

今回は「実験」の節で述べたように、差分をとった図の直線にみえる区間 を fit し、その差をエネルギーに対応させた。

図 6.1: オシロスコープのデータ

図 6.2: オシロスコープのデータの解析

NaI の分解能は 10 %程度、半導体検出器は 1 %以下であるのに対して、 CdTe 半導体は 662keV で 10 %程度となり、半導体検出器としてはあまりよ くないように思われる。

これを改善するためには、2つあげられる。

1.電極にかける電場を大きくする。電場を大きくすれば、前小節で述べた問題は解決される。電場を大きくする方法としては、

1-a.bias 電圧を大きくする

1-b.CdTe半導体の厚さを薄くする

同じbias電圧をかけても厚さを薄くすれば、大きい電場が得られる。しかし、 あまり薄くしすぎると検出効率が落ちるので、適度な厚さにしないといけな い。

2.FADCのnoiseを落とす

今回使った FADC には振幅 2count の三角波のような周期的ノイズがあった ため、fit する区間をかえれば平均値もかわり、対応するエネルギーも 20keV ずれてくる。FADC 自身に問題があったように思われるので、FADC の交換 をするべきである。

6.3 Experiment of Double Beta Decay

本実験での誤差は CdTe 半導体の分解能、FADC の noise 平均化、FADC の分解能が考えられる。CdTe 半導体と FADC の分解能は上記の実験より合わせて 9.05 %。FADC の平均化の誤差は 20keV を考慮して、CdTe が Cd の Q 値 1749 ± 158 ± 20keV の陽電子を、NaI が 2 つの 511keV ± $\sigma(\sigma$ は各 NaI による。)の光子を観測したものを neutrino-less Double Beta Decay を観測したものとする。

結果は153時間、198個観測した中で neutrino-less Double Beta Decay は 1個であった。そのデータを下図に示しておく。(最初の図の time100~130 の部分の解釈はまだできていない。しかし、正しいデータを得たものと仮定 する。)

この結果から、Double Beta Decay の寿命と質量の上限、下限について考える。neutrino-less Double Beta Decay の上限値 N_u と下限値 N_d は、 $N_u = 2 + \sqrt{2}$ 、 $N_d = 2 - \sqrt{2}$ と見積もれるので、寿命 $T_{0\nu}$ は Cd の個数 $N_0 = 2.5 \times 10^{25}$ 、計測時間 $t = \frac{153}{24} \frac{1}{365}$ を用いて、

$$T_{0\nu} = \frac{N_0}{N_{sig}} \times t \tag{6.1}$$

と表せるので、

$$1.2 \times 10^{23} < T_{0\nu} < 6.7 \times 10^{23}$$
[year] (6.2)

図 6.3: 低 bias 側

図 6.4: 高 bias 側

図 6.5: (高 bias 側)-(低 bias 側)

となる。寿命と有効質量 $< m_{\nu} >$ は

$$\langle m_{\nu} \rangle = \frac{m_e}{\sqrt{C_{mm}T_{0\nu}}} \tag{6.3}$$

という関係にあるので ($C_{mm}=7.7 imes10^{-16}$)、有効質量の上限値、下限値は

$$22.5 < < m_{\nu} > < 53.6 \,[\text{eV}] \tag{6.4}$$

となる。

最後に、今回の setup では 2*v*mode の場合で反応後の電子がほとんどのエネルギーを得た事象と区別することができない。これを解決できるような方法をこれから考えたい。

第7章 謝辞

今回の実験はたくさんの方々の手助けの下で行うことができました。市川 先生、横山先生、TAの森井さんには、一年間通して、様々なことをご教授い ただいたほか、実験装置の手配などもしていただき、本当にお世話になりま した。また NaIを貸してくださった中家先生、プログラムの手助けをしてく ださった、栗本さんほか、高エネルギー研究室の方々にはいろいろお手数を おかけしました。この場を借りて、深く感謝いたします。

- [1] arXiv:hep-ph/0510213v2 2 Dec 2005
- [2] M.Hirsch, K.Muto, T.Oda, H.V.Klapdor-Kleingrothaus: Z. Phys. A 347,151-160(1994)
- [3] www.rcnp.osaka-u.ac.jp/ tamii/statistics/statistics.pdf