

Beyond DUNE and Hyper-Kamiokande: neutrino facilities from muon decay

Seminar, Kyoto University 29 November 2018

> Paul Soler University of Glasgow

University of Glasgow

University of Glasgow: 1451 4th oldest English-speaking university

Contents

- 1. Physics Motivation
- 2. Neutrino Factory
- 3. Neutrino Factory Staging
- 4. Muon Ionization Cooling Experiment (MICE)5. nuSTORM

1. Physics Motivation

Neutrino mixing

 Weak eigenstates and mass eigenstates different: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \Rightarrow U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

$$where c_{ij} = \cos \theta_{ij}, and s_{ij} = \sin \theta_{ij}$$

Three mixing angles and one CP violating phase

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$|v_{\alpha}\rangle = \sum_{i} U_{\alpha i} |v_{i}\rangle \text{ where } \alpha = e, \mu, \tau \text{ and } i = 1, 2, 3$$
Seminar, Kyoto University: 29 November 2018

Includes CP violation: neutrino/antineutrino oscillation difference if $\delta \neq 0$

Neutrino oscillations in matter

- Resonant neutrino oscillation in matter: MSW effect
 - Discriminates between normal and inverted mass hierarchy P = (x) - P + P + P

Next generation long-baseline experiments

- Main physics goals of long-baseline neutrino experiments are to observe CP violation in neutrinos and to determine neutrino mass ordering
- Both T2K and NOvA are exhibiting hints of CP violation in the neutrino sector at ~2σ level

Next generation long-baseline experiments

- Require next generation experiments for 5σ results
- Hyper-K Design Report: arXiv:1805.04163
 - CP-violation accuracy: $\Delta \delta_{CP} \sim 23^{\circ}$ after 10 years for $\delta_{CP} = \pm 90^{\circ}$

Is discovering CP violation sufficient?

- Is discovering CP violation and determining the mass ordering sufficient or do we need more precision?
- We want to test the Standard Neutrino Model, the three-neutrino paradigm and search for new physics
- Compare PMNS mixing matrix to models:

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

where $c_{ij} = \cos\theta_{ij}$ and $s_{ij} = \sin\theta_{ij}$

$$U_{PMNS} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} \theta_{12} = \sin^{-1}(1/\sqrt{3}) \sim 35.3^{\circ}, \ \theta_{23} = 45^{\circ}, \ \theta_{13} = 0, \ \delta = 0 \\ \text{Harrison, Perkins, Scott PLB 530 (2002), 16} \\ \text{Tri-bimaximal mixing: suggestive of a} \\ \text{broken flavour symmetry} \end{pmatrix}$$

Is discovering CP violation sufficient?

- What precision is required to search for mechanism behind the generation of neutrino masses?
 - In quark sector, precision around 5°
 - Flavour sum rules:

Accuracy required ~5°

ie. deviation of mixing angles from tri-bimaximal mixing:

$$\theta_{12} - \theta_{13} \cos \delta = \sin^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

Comprehensive review: King, Luhn, Rep. Prog. Phys. 76 (2013) 056201

Precision of long-baseline experiments

- Precision requirement for CP violation:
 - For 75% of CP asymmetry coverage at 3σ : A_{CP} as low as 5%
 - Requires 1.5% measurement of $P \overline{P}$ (~1% syst. error), but we measure rate:

13

Precision of long-baseline experiments

- Precision requirement for CP violation:
 - In disappearance experiment we can satisfy:

Precision of long-baseline experiments

2. Neutrino Factory

Neutrino Factory Studies

- A Neutrino Factory is a neutrino beam facility from muon decay delivering 10²¹ muon decays per year
- Birth of modern Neutrino Factory:
 - S. Geer: Phys Rev D57, 6989 (1998)
- Neutrino Factory studies:
 - CERN study: CERN Yellow Report 99-02 (1999)
 - Feasibility Study I at Fermilab: Fermilab-Pub-00/108-E (2000)
 - Feasibility Study II at Brookhaven: BNL-52623 (2001)
 - Feasibility Study IIa at Brookhaven: BNL-72369 (2004)
 - International Design Study: Interim Design Report 2011 IDS-NF-020 arXiv:1102.2402
 - Muon Accelerator Staging Scenarios: launched by Muon
 Accelerator Programme (MAP) in USA 2013 (arXiv:1308.0494)

Neutrino Factory Baseline

International Design Study for a Neutrino Factory (IDS-NF)

- **Neutrino Factory Baseline**
- Proton driver
 - Proton beam ~8 GeV on target
- Target, capture and decay
 - Create π , decay into μ (MERIT)
- Bunching and phase rotation
 - Reduce ΔE of bunch
- Ionization Cooling
 - Reduce transverse emittance (MICE)
- Acceleration
 - 120 MeV \rightarrow 10 GeV with RLAs
 - FFAG option now not favoured
- Decay ring
 - Store for ~100 turns
 - Long straight sections

Optimum energy proton driver

Optimum beam energy

Adopted 10 \pm 5 GeV

- Depends on choice of target
- Optimum energy for high-Z targets around 8 GeV
- Results validated by HARP hadron production experiment

Proton Driver

Requirements:

arXiv:1112.2853

Parameter	Value
Kinetic energy	5–15 GeV
Average beam power	4 MW
	$(3.125 \times 10^{15} \text{ protons/s})$
Repetition rate	50 Hz
Bunches per train	3
Total time for bunches	$240 \ \mu s$
Bunch length (rms)	1–3 ns
Beam radius	1.2 mm (rms)
Rms geometric emittance	$< 5 \mu{ m m}$
β^* at target	$\geq 30 \text{ cm}$

Choice of proton driver depends on site:

- LINAC based (SPL) proton driver at CERN
- Synchrotron(s)/FFAG based proton driver (green field solution) – studied at RAL.
- PIP-2 LINAC based solution at Fermilab.

Target

Muon Front End

- Adiabatic B-field taper from Hg target to longitudinal drift
- Add chicane to remove protons
- Drift in ~1.5 T, ~60 m solenoid
- (MeV/c) Adiabatically bring on RF voltage to bunch beam
- Phase rotation: variable frequencies
 - High energy front sees negative E-field
 - Low energy tail sees positive E-field
 - End up with smaller energy spread
- □ Ionization Cooling: MICE demonstrator
 - Reduce transverse emittance by 36%
 - Performance: 0.066 μ/proton
 - Cooling increases muon yield by ~ 2.2

Front End 5.1 ICOOL v3.20

150

z [m]

200

250

300

100

Seminar, Kyoto University: 29 November 2018

0.01

0.008

0.006

Acceleration

- Baseline acceleration scheme at 10 GeV
 - Two "dog-bone" Recirculating Linear Accelerators (RLA)
 - First RLA up to 2.8 GeV
 - Second RLA up to 10 GeV

Decay Ring Geometry

- Racetrack geometry for decay ring with insertion
 - Straight: 562 m
 - Upper arc: 121 m
 - Lower arc: 113 m
 - Insertion: 46 m
 - Matching: 105 m (total)
 - →Circumference = 1556 m

Three μ^+ and three μ^- bunches

Far Detector

- Magnetised Iron neutrino Detector (MIND): 100 kton
- Octagonal plates and toroidal field (as in MINOS)
- Engineering metal plates
- Magnetic field delivered by 100 kA current

Seminar, Kyoto University: 29 November 2018

600.00 (in)

Performance 10 GeV Neutrino Factory

- Optimisation for 10 GeV Neutrino Factory, 10²¹ μ/year with 100 kton MIND at 2000 km gives best sensitivity to CP violation
- □ Best possible performance for a Neutrino Factory: $\Delta\delta_{CP} \sim 5^{\circ}$

3. Neutrino Factory Staging

Muon Accelerator Staging Programme

Staging Neutrino Factory allows to produce physics at each stage and spreads out cost – first step towards muon collider

Stage 1: NuMAX commissioning

- Neutrinos from a Muon Accelerator CompleX (NuMAX)
 - Neutrino Factory with 10²⁰ straight muons decays/year @ 5 GeV
 - Muon ring at 5 GeV pointing neutrino beam towards Sanford
 - A 10kT MIND or magnetized LAr detector upgraded from LBNE

Stage 2: NuMAX

- Neutrinos from a Muon Accelerator CompleX (NuMAX)
 - Add small amount of 6D cooling
 - Neutrino Factory with 5×10²⁰ straight muon decays/year @ 5 GeV
 - Muon ring at 5 GeV pointing neutrino beam towards Sanford

Stage 3: NuMAX+

- Neutrinos from a Muon Accelerator CompleX (NuMAX+)
 - Neutrino Factory with 10²¹ straight muons decays/year @ 5 GeV
 - Muon ring at 5 GeV pointing neutrino beam towards Sanford
 - Increased proton power and/or larger detectors

Stage 5: Muon Collider

fact

- Multi-TeV muon collider:
 - If warranted by LHC results a muon collider can reach up to 10 TeV
 - Likely offers the best performance, least cost and power consumption of any lepton collider operating in the multi-TeV regime.

Staging summary

Summary of machine parameters as a function of staging scenarios

	NuMAX Commissioning	NuMAX	NuMAX+	Higgs Fact 125 GeV	Muon Coll. 6 TeV ***
Beam energy (GeV/c)	5	5	5	62.5	3000
Cooling	No	Initial 6D	Initial 6D	6D no final	Full 6D
Proton beam power on target	1MW	1MW	2.75 MW	4 MW	1.8 MW
Proton beam energy on target	6.75 GeV	6.75 GeV	6.75 GeV	6.75 GeV	6.75 GeV
Acceleration cycle rep rate(Hz)	60	60	60	15	6
μ / cycle at front end	1.36 10 ¹²	1.36 10 ¹²	3.75 10 ¹²	2.6 10 ¹³	2.9 10 ¹³
Transmission efficiency (%)	15.3	56.7	56.7	15.4	6.9
μ / bunch in ring	3.5 10 ⁹	1.3 10 ¹⁰	3.5 10 ¹⁰	4 10 ¹²	2.0 10 ¹²
Bunches in ring	60	60	60	1	1
v towards detector/year(10 ⁷ s)	4.9 10 ¹⁹	1.8 10 ²⁰	5.0 10 ²⁰		
Higgs per year (10 ⁷ sec)				13500	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)					12

Physics performance of NuMAX

□ Physics performance in terms of fraction of CP phase δ with measurement accuracy at or below $\Delta\delta$ P. Huber

4. Muon Ionization Cooling Experiment (MICE)

Muon Cooling

Muon Ionization Cooling:

 Muon Ionization Cooling is the key technology required to be able to build front-end of a Neutrino Factory and a Muon Collider (ie. stochastic cooling enabled proton-antiproton collider in 1980s)

Muon Ionization Cooling Experiment

- Muon Ionization Cooling Experiment:
 - Letter of Intent: November 2001
 - Proposal at Rutherford Appleton Laboratory (RAL): January 2003
 - International collaboration built muon ionization cooling experiment at RAL

Muon Ionization Cooling Experiment

Cooling Channel with Partial Return Yoke

MICE data set (2015-2017): 350x10⁶ triggers x10⁶

Multiple Coulomb Scattering

- First measurement of muon Multiple Coulomb Scattering in lithium hydride at 140-240 MeV/c
 R. Bayes, J. Nugent
 - Validation of Molière scattering model and Geant4
- Validation of energy loss model

fact

4D covariance

matrix: \sum_{AD}

8

 p_x

тс

Measurement of beam emittance

 Single particle reconstruction: creates virtual beams by performing ensemble of all particles

 p_x

 $\sigma_{p_xp_x}^2$

- 4D-phase space of particles: (x, p_x, y, p_y)
- □ Normalised RMS transverse emittance: ε_T =

Ellipsoid containing x4D phase-space RMS volume σ_{xx}^2

Reconstructed phase space³ shows coupling of different variables for emittance calculation

 σ_{yy}^2

Ionization cooling implies reduction of transverse emittance after absorber

Transverse single-particle amplitude

Transverse single-particle amplitude:

Phase-space distance of muon from beam core

$$A_{\perp} = \varepsilon_T \mathbf{u}^T \Sigma^{-1} \mathbf{u}$$
 with $\mathbf{v} = (x, p_x, y, p_y)$ and $\mathbf{u} = \mathbf{v} - \langle \mathbf{v} \rangle$

- Mean amplitude is proportional to RMS emittance
- Ionization cooling reduces amplitude in the core of the beam (higher amplitude density at low amplitudes) Seminar, Kyoto University: 29 November 2018

Change in amplitude across absorber

49

- No absorber: decrease in number of core muons
- Absorber: increase in number of core muons (cooling signal)

Ratio of cumulative core densities

Cumulative core density increase for LH2 and LiH absorbers

down

'n

More cooling (R_{Amp}>1) at higher input emittances No absorber
LH2

Fractional emittance evolution

 Fractional emittance is phase-space volume occupied by fraction α of beam (α=9% is 1σ of 4D phase space)

$$\varepsilon_{\alpha} = \frac{1}{2} (\pi m c \varepsilon_T)^2 \Longrightarrow \frac{\Delta \varepsilon_{\alpha}}{\varepsilon_{\alpha}} \approx \frac{2\Delta \varepsilon_T}{\varepsilon_T}$$

□ Fractional (9%) emittance evolution 6 mm, 140 MeV/c, LiH, flip

Reverse emittance exchange

- Emittance exchange: muon collider 6D cooling and g-2
- Reverse emittance exchange lengthens bunch and increases luminosity in MC
- Polyethylene wedge absorber

5. nuSTORM

- Pions of 5 Gev/c captured and injected into ring.
- 52% of pions decay to muons before first turn: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- For 10²⁰ POT, flash of neutrinos from 8.6×10¹⁸ pion decays
- Muon momentum acceptance: p = 3.8 GeV ± 10%
- Muon decays (1 lifetime=27 orbits): $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e$
- For 10²⁰ POT, expect 2.6×10¹⁷ μ ⁺ decays
- Creates hybrid beam of neutrinos from pions & muons Seminar, Kyoto University: 29 November 2018

nuSTORM Facility

- nuSTORM facility:
 - 120 GeV protons on carbon or inconel target (100 kW)
 - NuMI-style horn for pion collection
 - Stochastic injection pions (5 GeV/c \pm 10%) into storage ring: 0.09 π /POT
 - Storage ring: large aperture FODO lattice (3.8 GeV/c ± 10%) muons: $8 \times 10^{-3} \mu$ /POT

Seminar, Kyoto University: 29 November 2018

nuSTORM Flux

nuSTORM flux and energy spectrum

- v_{μ} from pion decay $\pi^+ \rightarrow \mu^+ + v_{\mu}$ flux: 6.3×10¹⁶ v/m² at 50 m
- v_e from muon decay $\mu^+ \rightarrow e^+ + \overline{v}_{\mu} + v_e$ flux: 3.0×10¹⁴ v/m² at 50 m
- v_{μ} from kaon decay $K^+ \rightarrow \mu^+ + v_{\mu}$ flux: 3.8×10¹⁴ v/m² at 50 m
- Can be used for cross-section measurements and short baseline experiments
 Seminar, Kyoto University: 29 November 2018

nuSTORM event rates

- □ Flux uncertainties for nuSTORM: < 1%
- Event rates per 10²¹ POT in 100 tons of Liquid Argon at 50 m

μ^+		μ^-		
Channel	N _{evts}	Channel	N _{evts}	
$\bar{\nu}_{\mu}$ NC	1,174,710	$\bar{\nu}_e \text{ NC}$	1,002,240	
$\nu_e \text{ NC}$	1,817,810	$ u_{\mu} \text{ NC} $	2,074,930	
$\bar{\nu}_{\mu}$ CC	3,030,510	$\bar{\nu}_e$ CC	2,519,840	
ν_e CC	5,188,050	$ u_{\mu}CC$	6,060,580	
π^+		π^-		
$ u_{\mu} \text{ NC} $	14,384,192	$\bar{ u}_{\mu}$ NC	6,986,343	
ν_{μ} CC	41,053,300	$\bar{\nu}_{\mu}$ CC	19,939,704	

Limited by detector systematics:

Sterile neutrino search

Requires two magnetised detectors for neutrino oscillations:

- Super-saturated Magnetised Iron to remove wrong-sign muons: SuperBIND
- Magnetic Field Along 45 degree Azimuth
 Magne

240 kA from 8 Superconducting Trasmission Lines

Sterile neutrino search

- Short-baseline oscillation search with near detector at 50 m and far detector at 2 km, 10²¹ POT exposure
- Appearance and disappearance multi-variate analyses Adey et al., PRD 89 (2014) 071301 (Ryan Bayes' analysis)

Appearance efficiencies

Disappearance efficiencies

Sterile neutrino search

- Short-baseline oscillation search with near detector at 50 m and far detector at 2 km, 10²¹ POT exposure
- Appearance and disappearance multi-variate analyses Adey et al., PRD 89 (2014) 071301 (Ryan Bayes' analysis)

Neutrino interactions at nuSTORM

- Example of CCQE measurement errors: ~2-3%
 - Data for v_{μ} and \overline{v}_{e} cross-sections
 - Systematic errors completely dominated by detector

Neutrino interactions at nuSTORM

Influence of nuSTORM cross-section measurements on DUNE and T2HK δ_{CP} measurements

nuSTORM as 6D cooling testbed

- nuSTORM: testbed for 6D muon cooling experiment
 - At end of straight: 3.5 m iron pion absorber

– After absorber: $10^{10} \mu$ /pulse between 100-300 MeV/c

nuSTORM siting at CERN

nuSTORM at CERN (Physics Beyond Colliders study group)

 Complementary physics programme at CERN to long-baseline experiments in Japan and USA

Conclusions

- There is a physics case beyond Hyper-K and DUNE: test for three-neutrino paradigm and beyond Standard Model physics
- Design Study for a Neutrino Factory (IDS-NF)
 - Feasible Neutrino Factory has been designed
 - Staging of Neutrino Factory (ie. NuMAX) delivers physics at each stage
 - Provides a route to deliver high-energy muon collider
- MICE has demonstrated muon ionization cooling for the first time: it shows that Neutrino Factory is feasible
- NuSTORM could be first neutrino beam from muon decay
 - To be used for neutrino cross-section measurements and sterile neutrino search
 - Complementary to Hyper-K and DUNE maximises physics impact of long-baseline experiments