# On the measurements of neutrino energy spectra and nuclear effects in neutrino-nucleus interactions

Xianguo LU (盧 顕国) University of Oxford Kyoto HE Seminar 29 July 2016

# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary

References: arXiv:1512.05748 and 1507.00967, unless otherwise specified.







X.-G. Lu, Oxford





29 July 2016

# 1. Neutrino interactions on static nucleon

Static nucleon target



# 1. Neutrino interactions on static nucleon

- > Static nucleon target, charged current (CC)  $v \rightarrow l'$ , quasi-elastic (QE) N  $\rightarrow$  N'
  - Detection via charged lepton
  - ✓ Neutrino energy ← charged lepton kinematics





## 1. Neutrino interactions on static nucleon

- > Static nucleon target, charged current (CC)  $v \rightarrow I'$ , quasi-elastic (QE) N  $\rightarrow$  N'
  - Detection via charged lepton

  - Lepton and hadron transversely balanced



- Nucleus (bound nucleon) target
  - Fermi motion (FM) biases neutrino energy reconstruction



- Nucleus (bound nucleon) target
  - Fermi motion (FM) biases neutrino energy reconstruction
  - Multinucleon correlations: cross section unknown, strong bias to all final state kinematics x



#### initial nucleon in correlation with another in large relative motion

Properties largely unknown, for simplicity no further discussion here. See more detail in arXiv:1512.05748.

#### 29 July 2016

- > Nucleus (bound nucleon) target, CC  $\nu \rightarrow I'$ , QE N  $\rightarrow$  N'
  - Fermi motion (FM) biases neutrino energy reconstruction
  - Multinucleon correlations: cross section unknown, strong bias to all final state kinematics
  - × QE-like: QE faked by resonance production (RES)  $\Delta$  → N'π π absorbed in nucleus ← final state interaction (FSI)



- ≻ Nucleus (bound nucleon) target, CC  $\nu \rightarrow I'$ , QE N  $\rightarrow$  N'
  - Fermi motion (FM) biases neutrino energy reconstruction
  - \* Multinucleon correlations: cross section unknown, strong bias to *all* final state kinematics
  - $\star\,$  QE-like: QE faked by resonance production (RES)  $\Delta \rightarrow$  N' $\pi$ 
    - $\pi$  absorbed in nucleus  $\leftarrow$  final state interaction (FSI)
  - $\star$  FSI  $\rightarrow$  energy-momentum transferred in nucleus, possible nuclear emission



- Nucleus (bound nucleon) target
  - \* Nuclear effects: FM, multinucleon correlations, FSI, etc.
  - Transverse momenta NOT balanced











# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary

# 2. Minimal energy dependent measurement of nuclear effects



# 2. Energy dependence of final state kinematics



4-momentum transfer:  $Q^2$ Invariant mass of N': *W* Ignoring binding energy,

$$\omega \sim \frac{Q^2 + W^2 - m_{\rm N}^2}{2\sqrt{m_{\rm N}^2 + p_{\rm N}^2}}$$

(  $p_{
m N}^2/2m_{
m N}^2\simeq 2\%$  effect of Fermi motion)

Quasi-elastic scattering (QE):

$$\nu n \to \ell^- p$$

Resonance production (RES):

$$\nu p \to \ell^- \Delta^{++} \to \ell^- p \pi^+$$

For QE and RES,  $Q^2 << m_N^2$  (interaction length) W is nucleon or resonance mass.  $\omega$  "saturates" when  $E_v > O(m_N/2)$ 

- Lepton retains most of the increase of neutrino energy
- Hadronic kinematics much less  $E_{v}$ -dependent than leptonic ones

#### 29 July 2016

N' mom. saturates with large neutrino energy.

FSI all determined by N' momentum: 1. In-medium interaction probability  $\tau_{f}$  saturates





N' mom. saturates with large neutrino energy. ٩ FSI all determined by N' momentum: 0.8 N' mom. saturation 1. In-medium interaction probability  $\tau_{_{\rm f}}$  saturates 0.6 2. Energy-momentum transfer  $(\Delta E, \Delta \vec{p})$  from N' NuWro,  $v_{\mu}C(RFG)$ , QE to the nucleus also saturate •••••  $E_v = 0.6 \text{ GeV}, \tau_f = 0.22$ 0.4 .....  $E_v = 1$  GeV,  $\tau_f = 0.25$  $E_{v}=3$  GeV,  $\tau_{f}=0.28$ 0.2 •••••  $E_y = 6 \text{ GeV}, \tau_z = 0.28$ 00 100 200 300 500 400  $\Delta p (\text{MeV}/c)$ 



N' mom. saturates with large neutrino energy.

FSI all determined by N' momentum: 1. In-medium interaction probability  $\tau_{f}$  saturates 2. Energy-momentum transfer  $(\Delta E, \Delta \vec{p})$  from N' to the nucleus also saturate

Medium response: Nuclear emission: nucleus being excited or broken-up, emitting particles. Probability:  $P(\Delta E)$ 





N' mom. saturates with large neutrino energy. ٩ FSI all determined by N' momentum: 0.8 N' mom. saturation 1. In-medium interaction probability  $\tau_{f}$  saturates 0.6 2. Energy-momentum transfer  $(\Delta E, \Delta \vec{p})$  from N' NuWro,  $v_{\mu}C(RFG)$ , QE to the nucleus also saturate. •••••  $E_v = 0.6 \text{ GeV}, \tau_e = 0.22$ 0.4 E<sub>v</sub>=1 GeV, τ<sub>c</sub>=0.25 Medium response:  $E_{v} = 3 \text{ GeV}, \tau_{c} = 0.28$ 0.2 •••••  $E_v = 6 \text{ GeV}, \tau_i = 0.28$ Nuclear emission: nucleus being excited or 00 broken-up, emitting particles. 100 200 300 500 400 Probability:  $P(\Delta E)$  $\Delta p (\text{MeV}/c)$ 

•  $(\Delta E, \Delta \vec{p})$  fully determine nuclear response – ideal variables to characterize FSI.



- Neutrinos produced by accelerators have well understood directions.
- Momentum conservation applies in all directions of the neutrino-nucleus interaction system.

 $\rightarrow$  neutrino-**nucleon** kinematic imbalance =

nuclear effects



- Neutrinos produced by accelerators have well understood directions.
- Momentum conservation applies in all directions of the neutrino-nucleus interaction system.

→ neutrino-**nucleon** kinematic imbalance = nuclear effects

Neutrino energy unknown, use transverse projection

$$\rightarrow \delta \vec{p}_{\mathrm{T}} = \vec{p}_{\mathrm{T}}^{\mathrm{N}} - \Delta \vec{p}_{\mathrm{T}}$$

To first order, nuclear effects can be determined independently on neutrino energy.







Limited energy evolution with FSI strength

Counterexample

Strong – inverted – energy evolution contains lepton kinematics  $\delta \phi_{\tau} \sim \delta p_{\tau}/q_{\tau}$ 



; тр. 1.4 Extension (c) NuWro, NuMI on-axis flux, .C(RFG), QE 1.2  $\dots M_{\Lambda}^{QE} = 0.8 \text{ GeV}$  $M_{\Delta}^{QE} = 1.2 \text{ GeV}$ M^QE = 1.6 GeV 0.8 0.6 Proton momentum Counterexample 0.4 <u>×1</u>0<sup>-3</sup> 0.2 0 5 p.d.f. 0.5 1.5 2 2.5 3 (a) NuWro, NuMI on-axis flux,  $\nu_{\mu}C(RFG)$ , QE 6  $p_{\rm n}~({\rm GeV}/c)$  $ec{p}_{ ext{T}}^{\ell'}$ •••••  $M_{\rm A}^{\rm QE} = 0.8 \, {\rm GeV}$ 5  $- M_{\rm A}^{\rm QE} = 1.6 \, {\rm GeV}$ 4  $\vec{p}_{\ell'}$ 3 2 1  $-\delta \phi_{\rm T}$ 0 100 200 300 500 600 0 400  $\vec{q}_{\mathrm{T}} = -\vec{p}_{\mathrm{T}}^{\ell'}$  $\delta \rho_{_{
m T}}$  (MeV/c)  $\vec{p}_{\mathbf{N}'}$  $\delta ec p_{1}$  $\delta \alpha_{\mathrm{T}}$  $\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^{\rm N}$  $\Delta ec{p_{\mathrm{T}}}$  invariant w/ nucleon-level physics **FSI** FM 29 July 2016 X.-G. Lu, Oxford 32

Application



Directly showing initial state, useful to study new target material

Application



- In RES, N' = proton + pion, sensitive to pion FSI
- Useful to study FSI in anti-neutrino interaction (anti-nu CCQE N'=neutron)




#### 2. State-of-the-art probes of nuclear effects



# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary

## **3.** Nuclear effect-independent reconstruction of neutrino energy



# **3.** Hydrogen as neutrino interaction target



#### X.-G. Lu, Oxford

# 3. Hydrogen as neutrino interaction target

- Pure hydrogen
  - Technical requirement:
    - bubble chamber (historical: 73, 79, 78, 82, 86)



- Safety issue: explosive

LBNE design report, FERMILAB-PUB-14-022

- "Since the use of a liquid H2 bubble chamber is excluded in the ND hall due to safety concerns, ..."
- In the last ~30 years there has been no new measurement of neutrino interactions on pure hydrogen.

#### **3. Double-transverse kinematic imbalance**

Lepton-proton interaction  $\rightarrow$  3 charged particles:  $l p \rightarrow l' X Y$ 

- Leading order realization in standard model:

{X, Y}  
= {p, 
$$\pi^+$$
} for  $\nu + p \rightarrow \ell^- + \Delta^{++}$   
or {p,  $\pi^-$ } for  $\bar{\nu} + p \rightarrow \ell^+ + \Delta^0$ 



### **3. Double-transverse kinematic imbalance**

Lepton-proton interaction  $\rightarrow$  3 charged particles:  $l p \rightarrow l' X Y$ 

- Leading order realization in standard model:



#### **3. Double-transverse kinematic imbalance**

Lepton-proton interaction  $\rightarrow$  3 charged particles:  $l p \rightarrow l' X Y$ 

- Leading order realization in standard model:



# **3. Hydrogen doping**



$$\delta p_{\rm TT} \equiv p_{\rm TT}^{\rm p} + p_{\rm TT}^{\pi}$$

- Hydrogen: 0
- Heavier nuclei: irreducible symmetric broadening
  - by Fermi motion O(200 MeV)
  - further by FSI

# 3. Hydrogen doping



Double-transverse momentum imbalance

$$\delta p_{\rm TT} \equiv p_{\rm TT}^{\rm p} + p_{\rm TT}^{\pi}$$

- Hydrogen: 0
- Heavier nuclei: irreducible symmetric broadening
  - by Fermi motion O(200 MeV)
  - further by FSI
- Hydrogen doping: adding hydrogen atoms in target material.
- Hydrogen shape is only detector smearing.
  - With good detector resolution, hydrogen yield can be extracted.
  - With very good res., event-by-ev. selection of nu-H interaction is possible.
- *In situ* nuclear-free flux measurement with current technology is possible via *"bin-and-fit"* method (arXiv:1512.09042, see *new* demonstration in Section 6).

#### X.-G. Lu, Oxford

# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary









*Conclusion: large room to improve theories* 

#### X.-G. Lu, Oxford

# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary

# 5. Measurement in MINERvA

#### Nucl.Instrum.Meth. A743 (2014) 130-159



Phys.Rev. D91 (2015) no.7, 071301

- NuMI on-axis neutrino beam, 3 GeV peak energy
- Fine grained scintillator tracker as target
- Event selection: 1  $\mu$ ,  $\geq$  1 p, 0  $\pi$  (CCQE-like)
  - » μ reconstruction: tracker, matched to MINOS ND, momentum by range and curvature
  - p reconstruction: ID and momentum by tracker dE/dx profile, momentum threshold 450 MeV
  - >  $\pi$  veto: cut on untracked energy and Michel electrons

#### X.-G. Lu, Oxford

## **5.** Measurement in MINERvA – selecting ESC protons



29 July 2016

54

# **5.** Measurement in MINERvA – selecting ESC protons





|                  | Spread | Statistics |
|------------------|--------|------------|
| default          | 100%   | 100%       |
| dE/dx            | 60%    | 40%        |
| $\chi^2$         | 70%    | 60%        |
| $dE/dx + \chi^2$ | 50%    | 30%        |

Neutrino2016 P2.043

29 July 2016

# **5.** Measurement in MINERvA – p<sub>T</sub> scale corrections



# **5.** Measurement in MINERvA $- p_T$ scale corrections



## 5. Measurement in MINERvA – final-state momentum spectra



- In given acceptance, overall spectral shapes not sensitive to FSIs.
- Nuclear effects are difficult to observe on top of kinematics originating from neutrinonucleon interaction level. Direct observables are therefore needed.

# 5. Measurement in MINERvA – single-T kinematic imbalance





- GENIE predictions in MINERvA acceptance show collinear enhancement discussed previously (Section 4).
- Sensitivity achieved by momentum improvement cuts and corrections.

Neutrino2016 P2.043

#### 29 July 2016

# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary

# 6. Measurement in T2K

Nucl.Instrum.Meth. A659 (2011) 106-135



Event number : 6181 | Partition : 63 | Run number : 4175 | Spill : 0 | SubRun number : 1 | Time : Sat 2010-03-20 12:15:21 JST |Trigger: Beam Spill

- J-PARC off-axis neutrino beam, 600 MeV peak energy
- Fine Grained Detector (FGD1) as CH target
- Event selection: 1  $\mu$ ,  $\geq$ 1 p, 1  $\pi^+$ 
  - PID and tracking: TPC1

#### X.-G. Lu, Oxford

# 6. Measurement in T2K – double-T kinematic imbalance



Current objective: Develop signal extraction techniques; Measure v-H cross section – first one since 30 years.

29 July 2016

arXiv:1605.00154

### **6. Prospects for Current Experiments**



Simple performance projection of T2K-like detector using NuWro+T2K flux on CH (ideal acceptance)

arXiv:1512.09042

## 6. Prospects for Current Experiments



Simple performance projection of T2K-like detector using NuWro+T2K flux on CH (ideal acceptance)

The hydrogen event selection can be improved by

- Veto nuclear emission
- Veto  $\pi^0$ ,  $\gamma$  background
- Improve tracking resolution  $\rightarrow$  most critical

Requirement on nuclear physics decreases as resolution improves!

- ✓ Now only need to look at  $|\delta p_{\tau\tau}| < O(10 \text{ MeV})$  region.
- In future even a less burden; can be measured w/ pure nuclear target, e.g. graphite.

#### X.-G. Lu, Oxford





Previous setting (ideal accpt.) but w/ ideal tracking+PID

- 3-particle final state:  $\mu$ , p,  $\pi^{+}$
- $E_{v}$  reconstructed as sum of final-state energy

H excl.  $p\pi^+$  signal

Fraction: ~ 20% (blue-shifted peak) – 10% (tail)



29 July 2016

X.-G. Lu, Oxford

66





# 6. Potentials in Near-Future Experiments

- T2K-II ND for *in situ* nuclear-free flux measurement
  - Has free hydrogens (CH and H<sub>2</sub>O)
  - Capable of momentum and PID measurement of muons, protons, pions
  - Need to optimize configuration for momentum resolution, and for acceptance for high statistics. A higher B-field is a more expensive but very effective way to improve the resolution.
  - Calorimetry capability to veto nuclear emission and electromagnetic background.
  - Nuclear physics in  $|\delta p_{TT}| < O(10 \text{ MeV})$  can be measured *in situ* with embedded graphite target.

# Outline

- 1. Introduction
- 2. Measuring nuclear effects w/ minimal dependence on neutrino energy
- 3. Measuring neutrino energy independent of nuclear effects
- 4. Theory predictions
- 5. Measurement in MINERvA
- 6. Measurement in T2K
- 7. Summary

# 7. Summary

- Understanding nuclear effects is crucial for neutrino physics at GeV regime, deeply related to solving matter-antimatter asymmetry of our current universe.
- For neutrinos provided by accelerators, one can use transverse kinematic imbalance to maximally disentangle nuclear effects and neutrino energy uncertainty.
- Experimental efforts are under way. By exploring this new technique, we aim to provide critical physics input in neutrino interactions, and demonstrate/apply novel flux constraining techniques for future experiments.
- Outlook
  - Current measurements:
    - T2K-ND, MINERvA
  - Potential measurements in current experiments:
    - TK2-INGRID, T60, NOvA, µBooNE
  - Potential measurements in future experiments:
    - T2K-II-ND, DUNE-ND

### BACKUP




## Neutrino energy 1 GeV

## 6. Measurement in T2K



Nucl.Instrum.Meth. A659 (2011) 106-135

v beam: off-axis, peak ~ 600 MeV

## X.-G. Lu, Oxford



## 29 July 2016

4785; 4948