Super B の物理

岡田安弘(KEK/総合研究大学院大学) 2012年8月27日-29日 京都大学

> 将来計画検討小委員会 ICEPP 東大 2009年11月7日 とそのアップダート

これからのBファクトリーが目指すもの TeV領域の新しい素粒子像の解明に フレーバー物理の側面から寄与すること。

TeVスケールの物理

TeVの物理=電弱対称性の破れの背後にある物理を解明する

3

40年に一度くらいの大きなステップ

LHC 実験はTeV物理の入り口

TeV物理に関しては、いろいろな理論的な可能性が提案されている。 LHCではどの方向が正しいか決まるかもしれない。 TeV物理の全貌を解明し、それが素粒子や宇宙の基本的な問題とどのように 係わるのかを明らかにするのは、21世紀前半の課題。 4|

直接探索と間接探索 CKMの例

直接探索による新粒子発見と 間接探索による新現象発見のinterplay により理論の全貌があきらかになる。

$\textbf{KEKB/Belle} \rightarrow \textbf{SuperKEKB/Belle II}$

Success of B-Factories: world Highest Luminosity

confirmation of Kobayashi-Maskawa mechanism:
 CP violation due to a complex phase in CKM matrix

2001: Discovery of CPV in B mesons 2008: Nobel Prize for Kobayashi and Maskawa 2011: Most precise $sin2\varphi_1$ from $b \rightarrow c\underline{c}s$ processes

10 years of precise measurements of UT
 Hints of New Physics in flavor sector

Parties and the second second

The last beam abort of KEKB on June 30, 2010

First physics run on June 2, 1999 Last physics run on June 30, 2010 $L_{peak} = 2.1 \times 10^{34} / \text{cm}^2/\text{s}$ L > 1ab⁻¹

Belle II Detector

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter: CsI(TI), waveform sampling (+Pure CsI for end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

SuperKEKB luminosity prospect

The Belle II collaboration

20 countries, 67 institutes, ~400 collaborators (as of Jul. 2012)

Bファクトリーで探る新しい物理

- Super B Factory の物理の意義の検討いろいろなところで行われてきた。
- Super KEKB LoI (hep-ex/0406071)
- SLAC Super B workshop (hep-ph/0503261)
- Super B CDR (arXiv:0709.0451)
- CERN workshop "Flavour in the era of the LHC

B, D, タウ崩壊の物理で標準模型の予言からのず れをどの程度測定することが出来るか。 様々な新しい物理の模型は標準模型の予言からどの ようなパターンずれが期待できるか。

petential of 1035

次世代Bファクトリーの物理の特徴

• 様々な物理量により新しい相互作用の性質を探ることができる。

新しいCP位相 S(B->φKs)-S(B->J/ψKs) A(B->πK) S(b->sγ) DD mixing

Chiral structure $S(B->Ks\gamma)$ $A_{FB}(B->K*ll)$

レプトンフレーバーの破れ τ->μγ, τ->eγ, τ->μμμ, τ->μμe, τ->μee, τ->eee, τ->μη, τ->μπ, τ->μK

新しい"Weak Interaction" B-> τv B->D τv

Cabibbo-Kobayashi-Maskawa 行列のスキームうまくいっている。

New Physics Search については不十分

CKM fit はうまくいっているように見えるが、ま だ数10%のNew physics の寄与はあり得る。 Model-independent にループ効果を決めるには tree-level のparameter determination の精度を 飛躍的にあげる必要がある。

$$|Vub|, \phi_3/\gamma$$
 $V_{ub} = |V_{ub}|e^{-i\phi_3}$ \downarrow $+$ \downarrow \downarrow

Fit by tree level processes

こうして初めて、どこにどれだけNew physics の効果があるかわかる。

- フレーバーチェンジングニュートラルカレントを表す
 三角形のファインマン図のことをペンギンダイアグラムという。
- b->sγ 過程は最も重要なB稀崩壊過程。1993年にCLEO 実験で発見された。分岐比は3.5x10⁻⁴程度で実験の誤 差と標準模型の理論計算の精度はともに10%程度に達 している。両者の一致は良い。標準模型を超える物理 に対して有用な制約を与えている。

b->sy と新しい物理

標準模型ではb-syの振幅はほとんど位相を持たない。Photon のpolarization はほとんどleft-handed 新しい物理の効果は必ずしもそうとは限らない。

$$\sim V_{ts}^* V_{tb} \ \bar{s_L} \sigma^{\mu\nu} b_R F_{\mu\nu}$$

b->sγの**direct CP** violation および**B->K***γ などの**time-dependent CP** violation はそれぞれ新しい位相やカイラリティー違った相互作用の存在に敏感。

$$A_{CP} = \frac{B(b \to s\gamma) - B(\overline{b} \to s\gamma)}{B(b \to s\gamma) + B(\overline{b} \to s\gamma)}$$
 |Acp|<1% in SM

$$A_{CP}^{mix}(B \to K^*\gamma) = \frac{2Im(e^{-i\phi M}C_7C_7')}{|C_7|^2 + |C_7'|^2} \quad \text{Acp~O(ms/mb) in SM}$$
(C'7はC7とは逆のカイラリティーのオペレータ)

b->sll

- b->sllやB->K*llはpenguinだ けでなくbox diagramからの寄 与がある。
- 新しい物理に対してより多くの情報が得られる。
 Lopton invariant mass 分布

Lepton invariant mass 分布

T.Goto, Y.O., Y.Shimizu, M.Tanaka, 1997

ハドロンのペンギン過程

- 一般にb->sgなどによるハドロンへの崩壊では、理論的不定性が 大きいので新しい物理の効果を抜き出すのは大変。
- B->J/ψKs とB->φKsのtime-dependent CP violation の差は標準 模型では良い精度で一致するはず。新しい物理を探る良い方法。

B->¢Ks

Lepton Flavor Violation

- μ->eγや τ->μγはクォーク
 のb->sγに対応する過程。
- ニュートリノ振動の確立後は これらのLFV過程は起こるは ずと思われている。どのぐら いの大きさの分岐比になるか は、ニュートリノ質量生成の 物理の詳細による。単純な Dirac 質量やSeesaw 模型で はほとんど無視できるぐらい の分岐比。
- 超対称模型では実験の上限値の近くまで大きくなりうる。

Process	Current	Future	
$\mu^+ \to e^+ \gamma$	2.4x10 ⁻¹²	10 ⁻¹³ (MEG)	
$\mu^+ \to e^+ e^+ e^-$	$1.0 imes 10^{-12}$		
$\mu^- A \to e^- A$ (Ti)	$6.1 imes 10^{-13}$	10 ⁻¹⁷ (COMET, Mu2e)	
tau LFV	$10^{-8} - 10^{-7}$	10 ⁻⁹ (Super BF)	

ミュー粒子とタウ粒子のLFVの関係は新しい物理の模型による。 MEGでLFVが発見されたらタウ崩壊でLFVを探すことは緊急性が高い。

Super B, experimental prospects

		Observable	Super Flavour Factory sensitivity
		$\sin(2\beta) (J/\psi K^0)$	0.005-0.012
CKM parameters		$\gamma (B \rightarrow D^{(*)} K^{(*)})$	1-2°
		$\alpha (B \rightarrow \pi \pi, \rho \rho, \rho \pi)$	1-2°
		Vub (exclusive)	3–5%
		Vub (inclusive)	2-6%
		ρ	1.7-3.4%
		$ar\eta$	0.7–1.7%
		$S(\phi K^0)$	0.02-0.03
b-s transition	>	$S(\eta' K^0)$	0.01-0.02
b 5 transition		$S(K^0_S K^0_S K^0_S)$	0.02-0.04
		ϕ_D	1–3°
$\mathbf{P} > (\mathbf{D}) - \mathbf{v}$		$\mathcal{B}(B \to \tau \nu)$	3-4%
$B \rightarrow (D) \tau v$		$\mathcal{B}(B \rightarrow \mu \nu)$	5-6%
		$\mathcal{B}(B \to D \tau \nu)$	2-2.5%
		$\mathcal{B}(B \to \rho \gamma) / \mathcal{B}(B \to K^* \gamma)$	3–4%
		$A_{CP}(b ightarrow s \gamma)$	0.004-0.005
EW penguin		$A_{CP}(b \rightarrow (s+d)\gamma)$	0.01
		$S(K_S^0\pi^0\gamma)$	0.02-0.03
		$S(ho^0\gamma)$	0.08-0.12
		$A^{\rm FB}(B \to X_s \ell^+ \ell^-) s_0$	4-6%
tau LFV		$\mathcal{B}(B \to K \nu \bar{\nu})$	16–20%
		${\cal B}(au o \mu \gamma)$	$2-8 \times 10^{-9}$
		${\cal B}(au o \mu \mu \mu)$	$0.2 - 1 \times 10^{-9}$
		${\cal B}(au o \mu \eta)$	$0.4 - 4 \times 10^{-9}$

0(10%) physics (Now)
=> 0(1%) physics (Future)

CERN Flavour WS report: arXiv:0801.1833

50-75 ab-1

LHCb 実験との比較:車の両輪 LHCb 利点: Bs のCPの破れ、Bs->µµ

Conclusions

LHCb is a heavy flavour precision experiment searching for New Physics in **CP Violation** and **Rare Decays**

A program to do this has been developed and the methods, including calibrations and systematic studies, are being worked out...

<u>CP Violation: 2 fb⁻¹ (1 year)*</u>	Rare Decays: 2 fb ⁻¹ (1 year)*
 γ from trees: 5° - 10° γ from penguins: ≈10° D mining a bases 2,022 	• Bs \rightarrow K*µµ s ₀ : 0.5 GeV ² • B \rightarrow s γ A _{dir} , A _{mix} : 0.11
 B_s mixing phase: 0.023 β_s^{eff} from penguins: 0.11 	• $B_s \rightarrow \mu\mu$ BR.: 6 x 10 ⁻⁹ at 5 σ

We appreciate the collaboration with the theory community to continue developing new strategies.

We are excitingly looking forward to the data from the LHC.

* Expect uncertainty to scale statistically to 10 fb⁻¹. Beyond: see Jim Libby's talk on Upgrade 40

Marcel Merk, May 26 2008, at CERN

Recent LHCb results

Combining LHCb results: φ_s=-0.002±0.083±0.027 rad

ICHEP, Melbourne, July 9, 2012

18 S.Stone, ICHEP2012

ICHEP, Melbourne, July 9, 2012

S.Stone, ICHEP2012

ICHEP, Melbourne, July 9, 2012

29

27

S.Stone, ICHEP2012

Recent LHCb results

S.Stone, ICHEP2012

37

New physics examples

- SUSY
- Charged Higgs boson
- Little Higgs model
- Extra-dimension

次世代Bファクトリーが動き出すころは LHCの初 期の成果は出そろっているはず。

LHC でSUSY が見つかったら

- 大統一があるか、ニュートリノの質量はシー ソー機構によるのか、新たなCPの破れの原因は あるか、などの問題が重要となる。
- クォークおよび荷電レプトンのLFVに様々なシ グナルが見える可能性がある。

T.Goto,Y.O., T.Shindou,M.Tanaka, 2007

T.Goto,Y.O., T.Shindou,M.Tanaka, 2007

Summary table of flavor signals for mSU MSSA with U(2) flavor symmetry		JGRA, SUSY seesaw, SUSY √ large deviation • possible deviation			GUT, LFV				
Model A	$A_{CP}(s\gamma)S_{CP}(K^*\gamma)$	$A_{CP}(d\gamma)S_{CP}(d\gamma)$	$(\rho \gamma) \Delta S_{CP}$	$(\phi K_S) S_{CP}(B_s -$	$\rightarrow J/\psi\phi)\Delta m_B$	$/\Delta m_{B_d}$ vs. $\phi_3 \mu$ -	$\rightarrow e\gamma \tau \rightarrow$	$\mu\gamma\tau \rightarrow e\gamma$	
mSUGRA MSSM + RN Degenerate ν_R , NH Degenerate ν_R , IH Degenerate ν_R , D Nondegenerate ν_R (I), NH Nondegenerate ν_R (I), NH SU(5) + RN Degenerate ν_R , NH Degenerate ν_R , IH Degenerate ν_R , IH Nondegenerate ν_R (I), NH Nondegenerate ν_R (I), NH Nondegenerate ν_R (I), NH	• ~ ~ • ~ ~ ~	• • ~ ~ ~	• ✓• ✓ ✓	• ~ • ~ ~	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	√ 	

Large LFV signals=> possible slepton mixing signals at LHC

T.Goto,Y.O., T.Shindou,M.Tanaka, 2007

LHC で荷電ヒッグスボソンがみつかったら

35

LHC charged Higgs search とB factory はMSSM の同じパラメター領域に敏感。 Bの崩壊と比較してCharged Higgs coupling universality のテストができる。

LHCでLittle Higgs with T parityの新粒子が 見つかったら

SU(5)/SO(5) non-linear sigma model $[SU(2) \times U(1)]^2 \rightarrow SU(2)_L \times U(1)_Y \text{ at } f$ $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em} \text{ at } v=246 \text{ GeV}$

At ~10 TeV, UV completion theory

At $f \sim O(1)$ TeV T-odd bosons: $W_H, Z_H, \phi_{ij},$ T-odd fermions: $u_{H,}d_H, l_H$ Top partners T_+, T_-

Less than ~200 GeV T-odd heavy photon A_H SM particles

New flavor mixing in heavy lepton/quark sectors.

FCNC やLFV過程に効く

LFV signals はLHT とSUSYでは違う特徴をもつ。

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e\gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau \rightarrow e \gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-\mu^+\mu^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}{Br(\tau \rightarrow e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82.0	~ 5	0.30.5
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-\mu^+\mu^-)}{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}$	0.71.6	~ 0.2	510
$\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-3} \dots 10^{2}$	$\sim 5\cdot 10^{-3}$	0.080.15

M.Blanke, A.Buras, B.Duling, S.Recksiegel, S.Tarantino, 2009

CMS TDR 2006

Model B_d Unitarity Time-dep. CPV Rare B decay Other signals **MFV** mSUGRA(moderate $\tan \beta$) $B \to (D) \tau \nu$ mSUGRA(large $\tan \beta$) B_d mixing $B_s \rightarrow \mu \mu$ **MFV** SUSY $b \rightarrow s \ell^+ \ell^ B_s$ mixing SUSY GUT with ν_R $B \to \phi K_S$ B_{s} mixing $B \to K^* \gamma$ τ LFV, n EDM $A_{CP}^{b \to s\gamma}, b \to s\ell^+\ell^-$ Effective SUSY B_d mixing $B \to \phi K_S$ B_s mixing $b \rightarrow s \ell^+ \ell^-$ KK graviton exchange - $K^0\overline{K}^0$ mixing Split fermions $b \rightarrow s \ell^+ \ell^ B_d$ mixing Extra $D^0 \overline{D}^0$ mixing in large extra dimensions Dimension $B \rightarrow \phi K_S$ $b \rightarrow s \ell^+ \ell^ B_s$ mixing Bulk fermions B_d mixing models $D^0 \overline{D}^0$ mixing in warped extra dimensions $b \rightarrow s \ell^+ \ell^-$ Universal extra dimensioins $K \to \pi \nu \overline{\nu}$ **MFV** $b \rightarrow s \gamma$

Examples of New Physics Models and flavor signals 2003 SLAC WS Proceedings, hep-ph/0503261

標準模型の予言からのずれのパターンは模型によって違う

まとめ

- TeV の物理を解明するには直接探索と間接探索の両面が必要。
- •間接探索の役割は新しい相互作用の性質を探ること。
- Bファクトリーの特徴は様々な過程のいろいろな観 測量により、たくさんの質的に違った情報を得るこ とができる点。
- 今までのBファクトリーではいろいろな物理量が測定できるようになっていきた。現在見つかっている 過程が新しい物理の探索に有用となるためには、ほとんどの場合一ケタぐらい精度を上げる必要がある。