KEKB / SuperKEKB The Luminosity Frontier

Katsunobu Oide (KEK) Jan. 19, 2005 @ Kyoto Univ. http://kekb.jp

KEKB = Asymmetric Double-Ring Collider for B-Physics 8 GeV Electron + 3.5 GeV Positron

1989:	Design work started.		
1994:	Approval of the budget, construction started.		
June 1995:	KEKB Design Report		
Sep. 1997:	Commissioning of the injector Linac started.		
Dec. 1998:	First beam at HER.		
Jan. 1999:	First beam at LER.		
May 1999:	Belle roll-in.		
June 1999:	First event at Belle.		
Apr. 2001:	World record of the luminosity, 3.4 /nb/s.		
Oct. 2002:	World record of the integrated luminosity, 100 /fb.		
May 2003:	Exceeded the design luminosity, 10 /nb/s.		
Feb. 2004:	Exceeded 12 /nb/s & 200 /fb.		
June 2004:	13.9 /nb/s & 288 /fb.		
Dec. 2004:	338 /fb.		
continues rewriting own records			

The Competition

Monthly Integrated Luminosity

Up to now, KEKB is taking the lead over PEP-II by about 50% margin.

But cannot relax. They have a very ambitious plan to 2.4×10^{34} cm⁻²s⁻¹ by 2007.

Continuous Injection Mode (CIM)

- Belle takes data continuously, except for veto for 3.5 msec after each injection pulse.
- 30% higher average luminosity.
- More stable operation & higher operating currents.

The machine must be tuned up as ideal, to obtain the predicted luminosity....

- Four betatron tunes
- Emittances
- Grobal orbit/optics correction
 - Measure orbit responses at BPMs (450/ring)
 - $\Delta\beta/\beta \le 7 \%$
 - $-\Delta \eta_V \leq 7 \text{ mm}$
 - X-y coupling
- Tuning of local parameters at the IP
 - relative orbit offsets (5) better than 0.1σ, looking at beam-beam deflections, beam sizes, and Belle vertex
 - Vertical waists (2) \pm 0.5 mm
 - vertical dispersions (4)
 - x-y coupling parameters (8)

Collision with a finite crossing angle

KEKB Interaction Region

- Easier beam separation.
- •No bend for the incoming beam (less radiation).
- •No separation bends (less background).

•Simplified IR.

•Room for solenoid compensation, smaller β^* .

So, the merits were obvious, but was that safe enough?

•What about the synchrotron-betatron coupling?

$$H \approx f\left(x + \frac{x'z}{2} + \theta_x'z, y + \frac{y'z}{2}\right)\delta(s - nC)$$

z: longitudinal position in a bunch, θ_{x} : horizontal half corssing angle

Collision with a finite crossing angle

Synchrotron-betatron couplings are inevitable for a beam-beam interaction anyway, even with a head-on collision.

$$f_y \approx \frac{4\pi\xi_y}{\beta_y^*} \left(y + \frac{y'z}{2}\right)^2 \left(1 - \frac{\left(x + \theta_x z\right)^2}{2\sigma_x^{*2}}\right) \delta(s - nC) + \text{higher orders}$$

The relative magnitude of the crossing angle term is about same as the original term.

Crossing angle is manageable, if we choose the tunes.

Crab crossing in the near future

•Crab crossing will boost the beam-beam parameter up to 0.14!

(Strong-weak simulation)

K. Ohmi

Head-on(crab)

(Strong-strong simulation)

crossing angle 22 mrad

•Superconducting crab cavities are under development, will be installed in KEKB in early 2006.

K. Hosoyama, et al

Fabrication

Fabrication & Processing of Crab Cavity

Hydro-forming

Grinding of Welding Part

Barrel Polishing

Nb Half Cell

Fabrication & Processing 2

Electro-Polishing

High Pressure Water Rinsing by 80 bar Ultra-Pure water

Annealing at 700°C for 3 hours

SuperKEKB, the next step

Three factors to determine luminosity:

ARES Cavity

- Passive stabilization with huge stored energy.
- Eliminates unnecessary modes by a coupling of 3 cavities.
- Higher order mode dampers and absorbers.
- No need for longitudinal bunch-by-bunch feedback.
- No transverse instability arises from the cavities.

Superconducting Cavity

- World's highest current, 1.2 A.
- Input coupler has been operated up to 380 kW.
- Ferrite HOM absorber working at 10 kW.

ARES upgrade for SuperKEKB

- Larger detuning
- ⇒ Change energy ratio : Us/Ua = 9 → 15

Small modification on the window size of A-cav

-1 mode growth time :0.3 ms to 1.6 ms.

Then the -1 (and -2) modes related to the fundamental mode will be suppressed by a FB system in the RF control system.

(need bunch-by-bunch FB to suppress ARES HOM & $0/\pi$ mode instability)

- Higher HOM power
 Upgrade of HOM damper
- Higher input RF power
 400 kW/cavity -> 800 kW/cavity
 R&D of input coupler using new test-stand.

Talks by Kageyama, Abe

Superconducting Cavity

SuperKEKB challenges: The expected power load to the HOM absorber is 50 kW/cavity at 4.1 A, (even) with a larger beam pipe of 220 mm ϕ .

HOM damper upgrade may be needed.

Electron cloud

Blow-up of the vertical beam size in LER has been suppressed by more solenoid windings.

The coverred length of solenoids reached 2,300 m, raised the threshold to 1.8 A.

Specific luminosity vs. LER current. Solenoids are just so effective.

Winding more solenoids in the LER

Vacuum components: Antechamber-type copper duct

Fight for High Current

- High luminosity always requires high stored current.

- The history of KEK was a history of fight against high current, which caused

Heating of components, by synchrotron light and higher order modes

Discharge and melt down

Vacuum leak

Damage on Belle detectors

- Endless upgrades of components have been done on vacuum chambers/movable masks/bellows/pumps/abort windows, etc.

- Machine protection system with fast beam abort has been developed to reduce the possible damage.

Heavy groove on the surface of a copper movable mask in HER.

Thermal deformation of the fingers for rf shield of bellows.

Vacuum components: Bellows chamber with comb type RF-shield

High thermal strength
Low impedance
No sliding contact on the surface facing the beam

Comb-type bellows were installed in the LER (2004). Talk by Suetsugu

C-Band Klystrons

	S-band	C-ba	and	
Parameters	KEKB	1-st prototype	2m-structure	Unit
total length	2.072	1.082	2.0	m
number of regular cells	54	54	108	
regular cell length (d)	35.0	17.5	17.5	mm
disk thickness (t)	5.0	2.5	2.5	mm
disk iris diameter (2a)	24.95 - 20.90	12.48 - 10.45	14.03 - 10.54	mm
cavity diameter (2b)	83.0 - 82.0	41.5 - 41.0	42.0 - 41.0	mm
group velocity (v_g/c)	1.4	1.9 - 1.0	2.8 - 1.0	%
shunt impedance	57	75 - 85	67 - 85	$M\Omega/m$
Q factor	13700	9690	9700	
RF power in cells	30 15	34 15	50 15	
Field gradient	21	41.2 - 39.0	42.5 - 38.1	0
Filling time	462	234	376	3
Attenuation constant	0.302	0.434	0.696	

Table 11.3: Accelerating section characteristics

Figure 11.7: C-band 1m-long accelerating section (1-st prototy

Prototype C-band structure installed and tested at linac using actual beam (2003). Measured field gradient of 41 MV at 43 MW agrees with expectation.

Talk by Kamitani

Damping Ring

- Positron emittance needs to be damped, to pass reduced aperture of C-Band section and to meet IR dynamic aperture restrictions.
 - Electron DR may be considered later to reduce injection backgrounds in physics detector, but for now only positron DR considered.
- Damping ring located downstream of positron target, before C-Band accelerating section.

Talk by Kikuchi

How long should we run?

How much do we need?

Summary

- KEKB has been the front runner on the luminosity frontier.
- 1 /ab will be reached around 2007.
- A technically feasible design of SuperKEKB for 2.5×10^{35} cm⁻²s⁻¹ has been done.

Luminosity*:

Beam-beam tune shift parameter*:

Beam current:

Luminosity rewritten:

 $=\frac{N_+N_-f}{4\pi\sigma_x^*\sigma_v^*}R_L$ Geometrical reduction factors (σ_z , $\beta^*, \theta_x, \varepsilon_x, \ldots)$ $\frac{r_e}{2\pi\gamma_{\pm}}\frac{1}{\sigma_{x,y}^*}(\sigma_x^*)$ $\xi \pm x, y$

$$I_{\pm} = N_{\pm} e f$$

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y} \right)$$

$$L \approx \frac{\gamma_{\pm}}{2er_e} \frac{I_{\pm}\xi_{\pm y}}{\beta_y^*}$$

(flat beam, short bunch)

*Assume both beams have the same sizes and β^*s .

A jacket-type magnetic shield for the Crab Cavity.

The magnetic shield is made by 3mm thick permalloy sheet by spinning and forming. The cell and beam pipe parts can divide into two peaces and assemble around the crab cavity.

Parameters for SuperKEKB

		bare lattice	with beam-beam	unit
Beam current (LER/HER)	Ι	9.4/4.1	9.4/4.1	А
Beam energy (LER/HER)	Е	3.5/8.0	3.5/8.0	GeV
Emittance	ε _x	24	77	nm
Horizontal beta at IP	β_x^*	20	4.5	cm
Vertical beta at IP	β_y^*	3	2.3	mm
Horizontal beam size	σ_x^*	69	59	μm
Vertical beam size	σ_y^*	0.7	1.4	μm
Beam size ratio	$r = \sigma_y^* / \sigma_x^*$	1	2.4	%
Crossing angle	$\theta_{\rm x}$	0	0	mrad
Luminosity reduction	R _L	0.86	0.81	
ξ_x reduction	$R_{\xi x}$	0.99	0.97	
ξ_y reduction	$R_{\xi y}$	1.11	1.17	
Horizontal beam-beam	ξ _x	0.137	0.041	
Vertical beam-beam	ξ _y	0.218	0.108	
Reduction ratio	$R_L/R_{\xi y}$	0.78	0.70	
Luminosity	L	4x10 ³⁵	2.4×10^{35}	cm ⁻² s ⁻¹

Machine Parameters (June 3, 2004)

Date	6/7/2004		Design		
	LER	HER	LER	HER	
Current	1.58	1.19	2.6	1.1	Α
Bunches	1289		5000		
Bunch current	1.2	0.92	0.52	0.22	mA
Spacing	1.8	-2.4	0.6		m
Emittance ε_x	18	24	18	18	nm
β_x^*	59	56	33	33	\mathbf{cm}
β_{v}^{*}	0.52	0.65	1	1	\mathbf{cm}
Hor. Size @ IP	103	116	77	77	$\mu \mathrm{m}$
Ver. Size @ IP	2.1	2.1	1.9	1.9	$\mu \mathrm{m}$
Bunch length	8	6	4	4	$\mathbf{m}\mathbf{m}$
Beam-beam ξ_x	.107	.075	.039	.039	
Beam-beam ξ_y	.070	.057	.052	.052	
Ave. pressure	80	130	100	100	nPa
Lifetime	160	220	220	440	min.
Luminosity	13.92		10		/nb/s
∫Lum/day	944		~600		/pb
∫Lum/7 days	5.94		-		/fb
∫Lum/30 days	24.00		_		/fb
Lum, total	271/5	years	100/	3 years	/fb

Table 1: Machine parameters of KEK, comparing to the design values.

Machine parameters

Parameters		LER/HER	Unit
Beam energy	E	3.5/8.0	GeV
Beam current	1	9.4/4.1	A
Particles/bunch	N	1.18´10 ¹¹ / 5.13´10 ¹⁰	
Number of bunches	n _b	5018	
Circumference	С	3016.26	т
Bunch spacing	σ_b	0.6	т
Horizontal β at IP	β _x	200	mm
Vertical β at IP	β_y	3	mm
Bunch length	σ_{z}	3	mm
Radiation loss	U ₀	1.23/3.48	MeV/m
Horizontal beam-beam	ξx	0.137	
Vertical beam-beam	ξγ	0.14	

Tune Survey

Simulation by M. Tawada

- **1**0/29/2002
- **△** 4/2/2003
- 5/9/2003

Reducing LER v_x from 0.510 to 0.506 increased the luminosity by 20% in 2003, as the simulation predicted.

20% more luminosity is expected by reducing HER v_x from 0.513 to 0.507.

