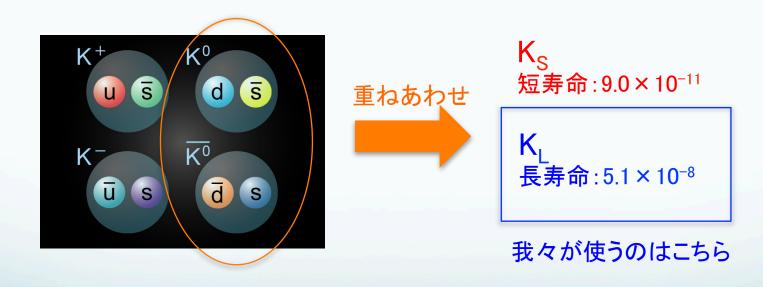

Kグループ実験紹介

KOTO 京都グループー同

Kグループメンバー


- K^oTO京都グループ
 - 併任准教授:野村正(KEK)
 - 助教:南條創
 - 学生:河崎直樹、増田孝彦、内藤大地、前田陽祐、関繁人
- K^oTOメンバー:約60名
 - 山形大、KEK、防衛大、大阪大、岡山大、京都大
 - Arizona, Chicago, Michigan (USA)
 - Korea, Taiwan, Russia

Kaonの物理

Kaonとは?

- Sクォークとu/dクォークからなるmeson
 - 4種類のKaonがある
 - 質量は~500Me√

CP violation

- 現在の宇宙が出来るためには……(サハロフの3条件)
 - 1. 宇宙が熱平衡にないこと
 - 2. バリオン数が保存しないこと
 - 3. CP対称性が破れていること
- CP対称性の破れ
 - 粒子と反粒子で物理法則が異なる
 - 小林・益川理論で説明←標準理論
- ただし、小林・益川理論では破れの大きさが小さすぎる

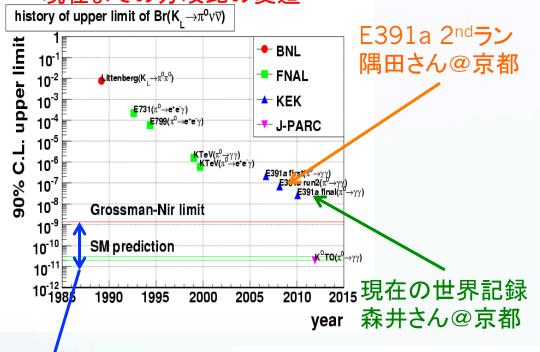
何か新しい物理があるはず!

CP violationの発見

- 1964年、CroninとFitchが
 K_L→π⁺π⁻崩壊を発見
 - CP=-1からCP=+1への崩壊
 - →CP対称性は実際に破れている!

- 1973年、小林・益川理論
 - 6種類のクォークがあればCPの破れ は理論的に説明可能
 - ただし、破れの大きさが足りない……

K^oTO実験について


何をするのか?

- K_L→π⁰ν ν 崩壊探索実験
- $K_L \rightarrow \pi^0 \nu \nu E$ は?
 - CPを破る崩壊
 - 非常に起こりにくい崩壊
 - 標準理論では、分岐比2.4×10⁻¹¹(400億分の1)
 - あなみに、さいころが14回連続で1が出る確率がこれくらい
 - これ以外の崩壊は全部バックグラウンドに……

とにかく、たくさんK」を作って、崩壊させたら見つかるはず!

今までわかっていること

現在までの分岐比の変遷

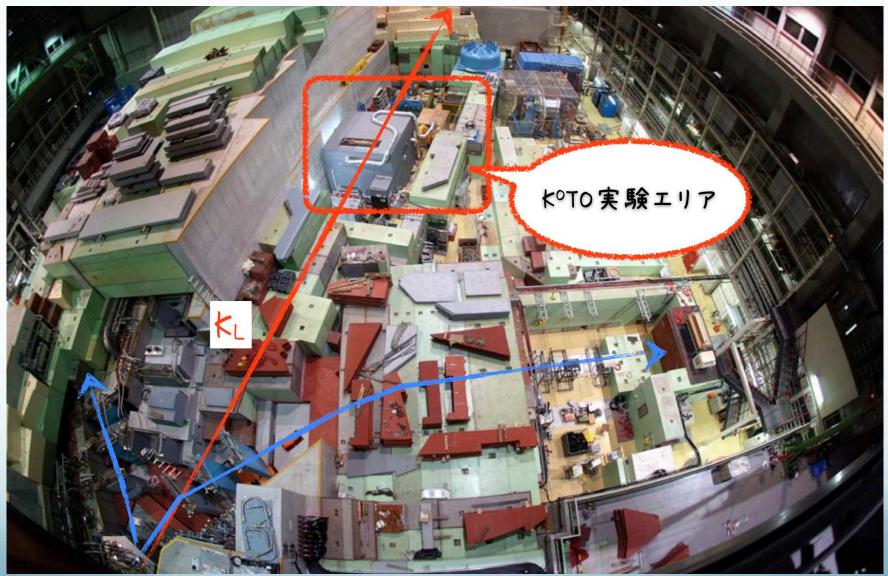
- E391a実験
 - 現在の世界記録保持実験
 - 上限値: 2.6×10⁻⁸
- 京都グループが参加した

標準理論を超えた新物理の領域

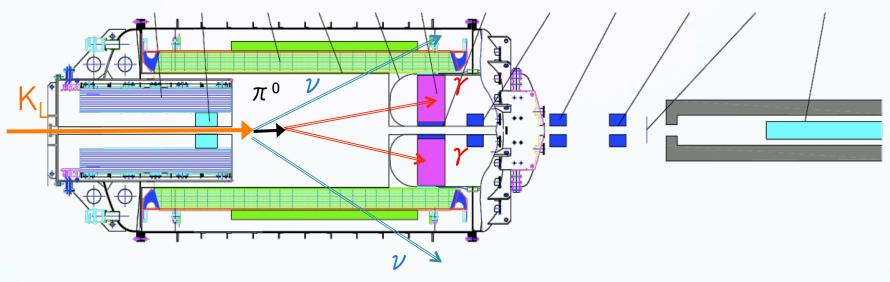
PHYSICAL REVIEW D 81, 072004 (2010)

Experimental study of the decay $K_L^0 \to \pi^0 \nu \bar{\nu}$

J. K. Ahn, ¹ Y. Akune, ² V. Baranov, ³ K. F. Chen, ⁴ J. Comfort, ⁵ M. Doroshenko, ^{6,*} Y. Fujioka, ² Y. B. Hsiung, ⁴ T. Inagaki, ^{6,7} S. Ishibashi, ² N. Ishihara, ⁷ H. Ishii, ⁸ E. Iwai, ⁸ T. Iwata, ⁹ I. Kato, ⁹ S. Kobayashi, ² S. Komatsu, ⁸ T. K. Komatsubara, ⁷ A. S. Kurilin, ³ E. Kuzmin, ³ A. Lednev, ^{10,11} H. S. Lee, ¹ S. Y. Lee, ¹ G. Y. Lim, ⁷ J. Ma, ¹¹ T. Matsumura, ¹² A. Moisseenko, ³ H. Morii, ¹³ T. Morimoto, ⁷ Y. Nakajima, ¹³ T. Nakano, ¹⁴ H. Nanjo, ¹³ N. Nishi, ⁸ J. Nix, ¹¹ T. Nomura, ^{13,†} M. Nomachi, ⁸ R. Ogata, ² H. Okuno, ⁷ K. Omata, ⁷ G. N. Perdue, ^{11,¶} S. Perov, ³ S. Podolsky, ³ S. Porokhovoy, ³ K. Sakashita, ^{8,†} T. Sasaki, ⁹ N. Sasao, ¹³ H. Sato, ⁹ T. Sato, ⁷ M. Sekimoto, ⁷ T. Shimogawa, ² T. Shinkawa, ¹² Y. Stepanenko, ³ Y. Sugaya, ⁸ A. Sugiyama, ² T. Sumida, ^{13,‡} S. Suzuki, ² Y. Tajima, ⁹ S. Takita, ⁹ Z. Tsamalaidze, ³ T. Tsukamoto, ^{2,§} Y. C. Tung, ⁴ Y. W. Wah, ¹¹ H. Watanabe, ^{11,†} M. L. Wu, ⁴ M. Yamaga, ^{7,8,||} T. Yamanaka, ⁸ H. Y. Yoshida, ⁹ Y. Yoshimura, ⁷ and Y. Zheng ¹¹


どこで?

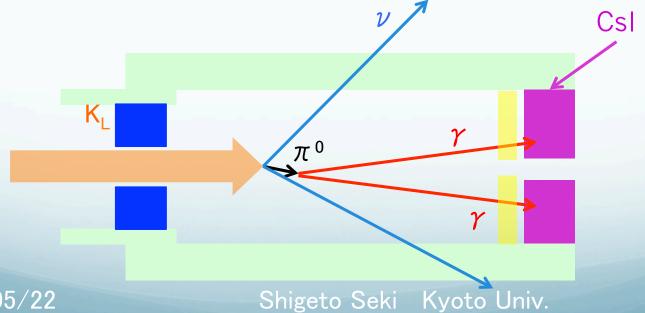
- 茨城県東海村の大強度陽子加速器: J-PARC
- 世界最大強度の陽子ビーム


我々の実験はここ

ハドロンホール

検出器

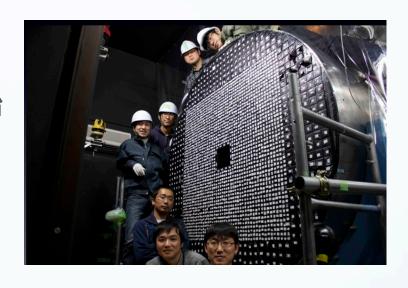
FB NCC MB BCV CV CsI CC03 CC04 CC05 CC06 BHCV BHPV



- 現在京都が担当している検出器
 - NCC, CV, CsI, BHPV

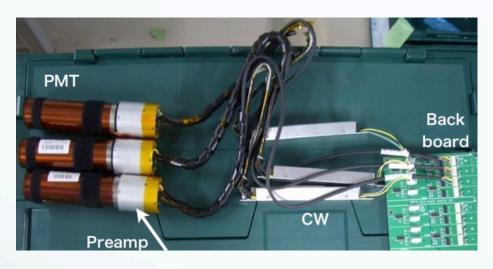
どれも実験に無くてはならない大事な検出器!

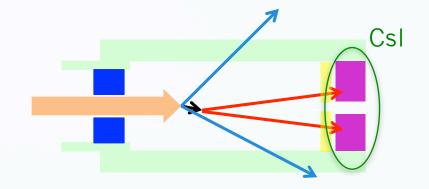
どうやって探す?


- 2γ + nothing
 - π⁰はすぐに2γに崩壊(数十nmくらい飛んだら崩壊する)
 - CsIカロリメータでエネルギーと運動量を測定 → π⁰の崩壊位置や運動量がわかる
 - ν は検出器を素通り
 - 他の検出器では何も検出されない

2011年度の歩み

- 地震からの復興
 - CsIにダメージはなかった
 - 結晶が少し動いた
 - J-PARCは昨年末から稼働開始

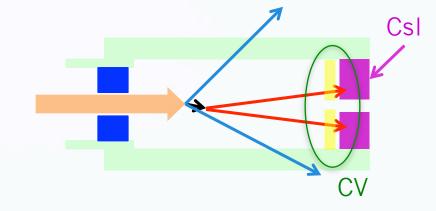

- CsIカロリメータの真空テスト
 - 放電の問題
- 検出器の製作
 - CV、NCCの実機製作

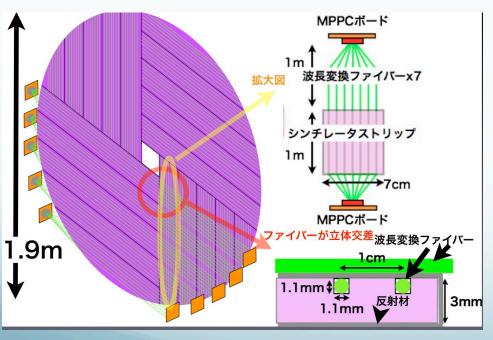

積み上がったCsI結晶 (地震の3日前の写真)

CW base(增田)

- 役割:
 - CsIカロリメータのPMTへの 電源供給とシグナルの増幅

- 低電力消費
- 十分な増幅率
- ・十分な低ノイズ

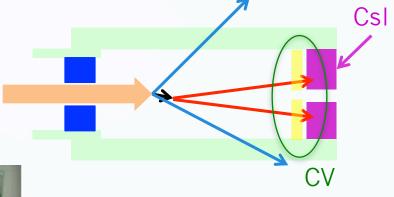


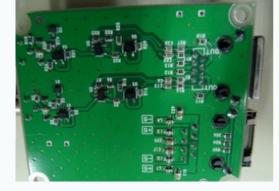


真空での放電対策のため PMTの底に穴を開けた

CV(内藤·前田)

- 役割:
 - CsIカロリメータに入射した粒子が 荷電粒子かどうか判別する





- 薄いシンチレータで余分な粒子 との反応を防ぐ
- 荷電粒子を確実に捉えるための 大光量
- MPPCによる読み出し

CV(内藤·前田)

- 役割:
 - CsIカロリメータに入射した粒子が 荷電粒子かどうか判別する

量産したアンプの性能試験

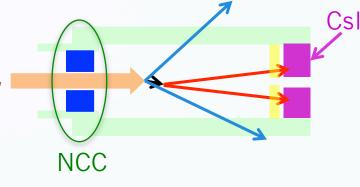

実験エリアへのインストール

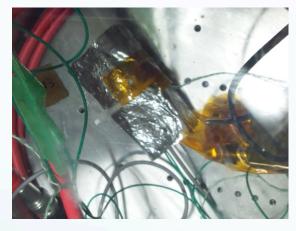


モジュールの製作が完了

NCC(河崎·関)

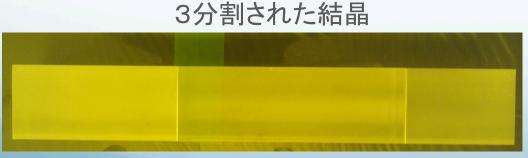
- 役割:
 - 中性子起源のバックグラウンドの削減
 - ビーム軸周りの中性子の測定





- 分割したCsI結晶をファイバーで読み出し
- · γと中性子を見分けることができる

NCC(河崎·関)


- 役割:
 - 中性子起源のバックグラウンドの削減
 - ビーム軸周りの中性子の測定

新しく作ったPMT基板を 真空中でチェック

結晶とファイバーを接着

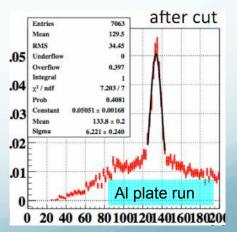
12/05/22

Shigeto Seki Kyoto Univ.

M1の皆さんができること

- 新しいビームモニターの開発
 - ビームの形などを実際に測定する
 - 物理ランに向けて重要!

京都グループが開発



- ビームホールを抜けたγを捉える
- Grossman-Nir limitを超えた測定のためには重要!
- NCC Liner CVの製作と運用
 - NCCの内側で荷電粒子を検出する
- アルミターゲットランの計画と遂行
 - ビーム中にターゲットを置いてπ⁰を生成
 - バックグラウンドの評価や検出器の性能評価に

現在のビームモニター

π⁰が再構成されている

今後の歩み

検出器に触れる+物理結果を出せる!

