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Introduction

Why are we so much interested in neutrino mass?

Neutrino mass is a window to high energy physics 
beyond the Standard Model !

Tiny ! → New mass scales ? New symmetry ?

Mixing ! → Implications on !avor structure ? 

CP-violation ? → Baryon asymmetry of the universe ?
Majorana ? → Lepton number violation ?



Introduction

Seesaw Mechanism [’79 Yanagida; ’79 Gell-Mann, Ramond, Slansky]

In the Standard Model : 

predicted to be
p
md/ms ' 0.22. In our argument, we use the ideas of imposing zeros

to the Yukawa coupling matrix to make the seesaw mechanism as economical as possible,

and hence, predictable on the remaining two important parameters � and mee.

As we will show, however, the seesaw mechanism with the minimal number of pa-

rameters achieved by two texture zeros cannot fit the five observed neutrino parameters

consistently for the normal light neutrino mass hierarchy. For the inverted light neutrino

mass hierarchy, on the other hand, we find that the models can fit the five observed neu-

trino parameters consistently. Furthermore, we find that the model predicts the Dirac

CP -phase, � ' ±⇡/2, which is in the measurable range in the foreseeable future. Notice

that the models with two texture zeros have only one CP -violating phase. Thus, the

CP -asymmetry for baryogenesis and the CP -violations in the neutrino oscillations are in-

evitably interrelated with each other. We also show that the e↵ective Majorana neutrino

mass responsible for the neutrinoless double beta decay is predicted to be around 50meV

which is also within reach of future experiments.

The organization of the paper is as follows. In section 2, we briefly review the seesaw

mechanism and summarize the parametrization of the models. In section 3, we derive

the conditions for two texture zeros. In section 4, we show that the minimal seesaw

mechanism cannot explain all the five neutrino parameters consistently for the normal

light neutrino mass hierarchy. In section 5, we show that the models of the minimal seesaw

can consistently fit all the five observed neutrino parameters. There, we also discuss the

predictions on the Dirac CP -phase � and the e↵ective Majorana neutrino mass mee. In

section 6, we discuss numerical implications of the models on thermal leptogenesis. The

final section is devoted to conclusions and discussions.

2 Neutrino Parameters in Seesaw Mechanism

In the seesaw mechanism, we introduce nN Majorana right-handed neutrinos Ni (i =

1�nN) which are singlets under the Standard Model gauge symmetries. The Lagrangian

responsible for the seesaw mechanism is given by,

L = y↵�`L↵ēR�h+ �i↵Ni`L↵h� 1

2
MijNiNj , (1)

3

→ the neutrinos remain massless ! 

Let us introduce the right-handed neutrinos (Ni ) :

(α, β =e, μ, τ)

predicted to be
p
md/ms ' 0.22. In our argument, we use the ideas of imposing zeros

to the Yukawa coupling matrix to make the seesaw mechanism as economical as possible,

and hence, predictable on the remaining two important parameters � and mee.

As we will show, however, the seesaw mechanism with the minimal number of pa-

rameters achieved by two texture zeros cannot fit the five observed neutrino parameters

consistently for the normal light neutrino mass hierarchy. For the inverted light neutrino

mass hierarchy, on the other hand, we find that the models can fit the five observed neu-

trino parameters consistently. Furthermore, we find that the model predicts the Dirac

CP -phase, � ' ±⇡/2, which is in the measurable range in the foreseeable future. Notice

that the models with two texture zeros have only one CP -violating phase. Thus, the

CP -asymmetry for baryogenesis and the CP -violations in the neutrino oscillations are in-

evitably interrelated with each other. We also show that the e↵ective Majorana neutrino

mass responsible for the neutrinoless double beta decay is predicted to be around 50meV

which is also within reach of future experiments.

The organization of the paper is as follows. In section 2, we briefly review the seesaw

mechanism and summarize the parametrization of the models. In section 3, we derive

the conditions for two texture zeros. In section 4, we show that the minimal seesaw

mechanism cannot explain all the five neutrino parameters consistently for the normal

light neutrino mass hierarchy. In section 5, we show that the models of the minimal seesaw

can consistently fit all the five observed neutrino parameters. There, we also discuss the

predictions on the Dirac CP -phase � and the e↵ective Majorana neutrino mass mee. In

section 6, we discuss numerical implications of the models on thermal leptogenesis. The

final section is devoted to conclusions and discussions.

2 Neutrino Parameters in Seesaw Mechanism

In the seesaw mechanism, we introduce nN Majorana right-handed neutrinos Ni (i =

1�nN) which are singlets under the Standard Model gauge symmetries. The Lagrangian

responsible for the seesaw mechanism is given by,

L = y↵�`L↵ēR�h+ �i↵Ni`L↵h� 1

2
MijNiNj , (1)

3

Lν
mass = −1

2

[
(νL, NR)

(
0 mT

D
mD M

) (
νL

NR

)]
+ h.c.→

→ the neutrinos have &nite masses : mν ! mDmT
D

M

mν = O(0.01) eV for M = O(1011) GeV & mD = O(1)GeV !

〈h〉 = v # 174.1GeV



Introduction

Leptogenesis [`86 Fukugita & Yanagida]

Baryon asymmetry (from nucleosynthesis and CMB):

must have been generated during the evolution of the universe.

ηB0 =
nB − nB̄

nγ
" 6 × 10−10

Sakharov three conditions (’67) : 

B (or B-L) symmetry breaking

C and CP violation

B-L and C/CP violating interactions outside of thermal 
equilibrium



[                               ]

Introduction
Leptogenesis [`86 Fukugita & Yanagida]

In!ation :  T → 0 ,  ηB0  → 0 
Reheating :  T → TR ,  ηB0  = 0 

NR are in the thermal equilibrium (T ≫ MR)

NR decays at a temperature TD 

1: NR  mass violates  L 

2: CP-violating decay 
NR → ! + h, !∗ + h∗

Γ[NR → ! + h]

!= Γ[NR → !∗ + h∗]

3: Out of equillibrium
MR/TD � 1

<nL>≠ 0

Baryon asymmetry is generated !

Lepton asymmetry is generated !

<nB>≠ 0Sphaleron

m̃1 =
∑

α

|λ1α|2
v2

MR
∝ T 2

D

M2
R

Tim
e

κ̄ !
(

0.01 eV
m̃1

)1.16

ηB0 ! 3 × 10−10 ×
(

MR

1010 GeV

) (
meff

ν

0.05eV

)
κ̄ sin δeff

Sakharov conditions



Introduction
In the seesaw mechanism...

Tiny neutrino mass can be explained by a new scale 
= Right handed neutrino mass !

With the CP-violating phases in the right-handed neutrino 
sector, the Baryon Asymmetry of the universe can be 
explained by Leptogenesis.

Future observations of the CP-asymmetry in the neutrino 
oscillations and the neutrino-less double beta decay, will 
support the ideas of the seesaw mechanism and 
Leptogenesis qualitatively.

To what extent will we learn the seesaw mechanism 
and Leptogenesis quantitatively?



Seesaw Mechanism vs Neutrino oscillation 

Seesaw Mechanism

λiα

yαβ
Mi

Number of real valued parameters 

15 = (18-3)
3
3

Low energy theory

yαβ
Mi

3
3

m̄νi 3
UMNS 6 = 3 + 1 + 2

>

[ Mass diagonalized base ]

mixing matrix (MNS matrix) [11];

UMNS =

0

@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

1

A ,

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A

⇥ diag(1, ei↵/2, 1) , (4)

m̄⌫ = UT
MNS �

T M�1
R �UMNS v

2 . (5)

Here, the sines and the cosines of the mixing angles ✓ij are abbreviated as sij = sin ✓ij

and cij = cos ✓ij. In the mixing matrix, we have eliminated one of the Majorana phases

in the neutrino mixing matrix since either m1 or m3 is vanishing for nN = 2.

Now, let us compare the number of the parameters in the high and the low energy

physics. The number of real parameters included in the light neutrino masses and the

mixing matrix is seven; two neutrino masses, three mixing angles, and two phases. This

is less than the number of the parameters included in � which adds up to nine after

eliminating the three phases by rotating `L and ēR.

To see how the two excessive parameters in � are hidden in the light neutrino mass

matrix in Eq. (2), it is transparent to write a generic solution of Eq. (2) by introducing a

complex matrix R [12, 8],

� =
1

v
M1/2

R Rm̄1/2
⌫ U †

MNS , (6)

where R is given by

R =

✓
0 cos z � sin z
0 sin z cos z

◆
, (7)

for the normal neutrino mass hierarchy and

R =

✓
� sin z cos z 0
cos z sin z 0

◆
, (8)

for the inverted neutrino mass hierarchy. These expressions show that a complex param-

eter z accounts for the di↵erence of the number of the parameters in the high and the

5

For given m̄νi and UMNS in the seesaw mechanism

mixing matrix (MNS matrix) [11];

UMNS =

0

@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

1

A ,
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A
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m̄⌫ = UT
MNS �

T M�1
R �UMNS v

2 . (5)

Here, the sines and the cosines of the mixing angles ✓ij are abbreviated as sij = sin ✓ij

and cij = cos ✓ij. In the mixing matrix, we have eliminated one of the Majorana phases

in the neutrino mixing matrix since either m1 or m3 is vanishing for nN = 2.

Now, let us compare the number of the parameters in the high and the low energy

physics. The number of real parameters included in the light neutrino masses and the

mixing matrix is seven; two neutrino masses, three mixing angles, and two phases. This

is less than the number of the parameters included in � which adds up to nine after

eliminating the three phases by rotating `L and ēR.

To see how the two excessive parameters in � are hidden in the light neutrino mass

matrix in Eq. (2), it is transparent to write a generic solution of Eq. (2) by introducing a

complex matrix R [12, 8],

� =
1

v
M1/2

R Rm̄1/2
⌫ U †

MNS , (6)

where R is given by

R =

✓
0 cos z � sin z
0 sin z cos z

◆
, (7)

for the normal neutrino mass hierarchy and

R =

✓
� sin z cos z 0
cos z sin z 0

◆
, (8)

for the inverted neutrino mass hierarchy. These expressions show that a complex param-

eter z accounts for the di↵erence of the number of the parameters in the high and the

5

the Yukawa coupling λ is determined up to R,

which satis&es RTR = 1 (i.e. complex orthogonal matrix = 6 parameters).

The Yukawa coupling λ cannot be determined by the low energy 
data... 



Seesaw Mechanism vs Neutrino oscillation 

Relation between CP-violating phases :

Neutrino oscillation : Dirac CP-phase δ in UMNS

ACP = P(νl→νl’) - P(ν̄l→ν̄l’) ��JCP = Im[Uμ3Ue3*Ue2 Uμ2*]
= (sin2θ12 sin2θ12 sin2θ13 cosθ13sinδ)/8

Leptogenesis : CP-phase of the redundant parameters in R

ηB0 ∝ meff
ν sin δeff meff

ν sin δeff =
Im[λmνλT ]11

(λλ†)11

For ↵ = µ and ↵0 = ⌧ , the condition for two texture zeros is reduced to

s13e
i(�+↵/2) = 0 . (51)

Therefore, the model is again inconsistent with the observations.

6 Implications on Leptogenesis

In this paper, we have discussed the seesaw mechanism which includes the minimum

number of parameters for successful leptogenesis and three neutrino oscillations in the

spirit of Occam’s razor. As a result, we found that the models with two texture zeros can

successfully fit all the five observed neutrino parameters by using five model parameters for

the inverted neutrino mass hierarchy. Furthermore, we also found that the model predicts

the maximal CP -phases in the neutrino mixing matrix. This result is very encouraging for

leptogenesis which requires non-vanishing CP -phase. In this section, we discuss numerical

implications of the models with two texture zeros on leptogenesis.

We assume the first right-handed neutrino N1 is much lighter than N2 for simplicity.

The baryon asymmetry generated by leptogenesis is approximately given by [19],

⌘B0 = nB/n� ' �3.4⇥ 10�4 ⇥ "1

✓
0.01 eV

m̃1

◆1.16

, (52)

which fits well the numerical result for m̃1 & 10�2 eV.5 Here, m̃1 is the so-called e↵ective

neutrino mass which is related to the decay rate of the lighter right-handed neutrino,

m̃1 =
X

`

|�1`|2
v2

M1
, (53)

and "L is the CP -asymmetry at the decay of the lighter right-handed neutrino,

"1 = � 3

16⇡

M1

(��†)11
Im[(��†M�1

R �⇤�T )11] . (54)

In terms of the low energy parameter and the complex parameter z, the above two

parameters for leptogenesis can be rewritten as follows. The coe�cient for the tree-level

decay width can be reduced to

��† =
1

v2
M1/2

R Rm̄⌫R
†M1/2

R ,

5 For the degenerated right-handed neutrino masses, the baryon asymmetry can be enhanced (for
recent developments see [20, 21]).

19

λmνλT =
1
v2

M1/2
R Rm̄2

νRT M1/2
R

→ ηB0 does not depend on UMNS ...

The CP-violating phases in the neutrino oscillation and 
Leptogenesis are independent.



Seesaw Mechanism vs Neutrino oscillation 

The seesaw mechanism is attractive model to explain the 
observed tiny neutrino mass.

Without knowing the origin of λ, it is di"cult to test the seesaw 
mechanism from the low energy data.

Observation of the CP-asymmetry in neutrino oscillations will 
support Leptogenesis qualitatively, but they are quantitatively 
independent.

To go one step further?

Top down :  Flavor symmetries, Grand Uni#ed Theory...

Instead, we take a bottom up approach as a trial where we 
reduce the number of the Yukawa couplings as small as 
possible as long as the experimental results are reproduced 
(Occam’s Razor).



Seesaw Mechanism with Occam’s Razor
We need only two right-handed neutrinos!

mixing matrix (MNS matrix) [11];

UMNS =

0

@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

1

A ,

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
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1

A

⇥ diag(1, ei↵/2, 1) , (4)

m̄⌫ = UT
MNS �

T M�1
R �UMNS v

2 . (5)

Here, the sines and the cosines of the mixing angles ✓ij are abbreviated as sij = sin ✓ij

and cij = cos ✓ij. In the mixing matrix, we have eliminated one of the Majorana phases

in the neutrino mixing matrix since either m1 or m3 is vanishing for nN = 2.

Now, let us compare the number of the parameters in the high and the low energy

physics. The number of real parameters included in the light neutrino masses and the

mixing matrix is seven; two neutrino masses, three mixing angles, and two phases. This

is less than the number of the parameters included in � which adds up to nine after

eliminating the three phases by rotating `L and ēR.

To see how the two excessive parameters in � are hidden in the light neutrino mass

matrix in Eq. (2), it is transparent to write a generic solution of Eq. (2) by introducing a

complex matrix R [12, 8],

� =
1

v
M1/2

R Rm̄1/2
⌫ U †

MNS , (6)

where R is given by

R =

✓
0 cos z � sin z
0 sin z cos z

◆
, (7)

for the normal neutrino mass hierarchy and

R =

✓
� sin z cos z 0
cos z sin z 0

◆
, (8)

for the inverted neutrino mass hierarchy. These expressions show that a complex param-

eter z accounts for the di↵erence of the number of the parameters in the high and the

5

( rank[m̄ν] = min[ rank[UMNS], rank[λ], rank[MR ]] )

→ the lightest neutrino mass = 0 !

Seesaw Mechanism

λiα

yαβ
Mi

9 = (12-3)
3
2

Low energy theory

yαβ
Mi

3
2

m̄νi 2
UMNS 5 = 3 + 1 + 1

>

Number of real valued parameters 

mixing matrix (MNS matrix) [11];

UMNS =

0

@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

1

A ,

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13
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⇥ diag(1, ei↵/2, 1) , (4)

m̄⌫ = UT
MNS �

T M�1
R �UMNS v

2 . (5)

Here, the sines and the cosines of the mixing angles ✓ij are abbreviated as sij = sin ✓ij

and cij = cos ✓ij. In the mixing matrix, we have eliminated one of the Majorana phases

in the neutrino mixing matrix since either m1 or m3 is vanishing for nN = 2.

Now, let us compare the number of the parameters in the high and the low energy

physics. The number of real parameters included in the light neutrino masses and the

mixing matrix is seven; two neutrino masses, three mixing angles, and two phases. This

is less than the number of the parameters included in � which adds up to nine after

eliminating the three phases by rotating `L and ēR.

To see how the two excessive parameters in � are hidden in the light neutrino mass

matrix in Eq. (2), it is transparent to write a generic solution of Eq. (2) by introducing a

complex matrix R [12, 8],

� =
1

v
M1/2

R Rm̄1/2
⌫ U †

MNS , (6)

where R is given by

R =

✓
0 cos z � sin z
0 sin z cos z

◆
, (7)

for the normal neutrino mass hierarchy and

R =

✓
� sin z cos z 0
cos z sin z 0

◆
, (8)

for the inverted neutrino mass hierarchy. These expressions show that a complex param-

eter z accounts for the di↵erence of the number of the parameters in the high and the

5

mixing matrix (MNS matrix) [11];
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0

@
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MNS �

T M�1
R �UMNS v

2 . (5)

Here, the sines and the cosines of the mixing angles ✓ij are abbreviated as sij = sin ✓ij

and cij = cos ✓ij. In the mixing matrix, we have eliminated one of the Majorana phases

in the neutrino mixing matrix since either m1 or m3 is vanishing for nN = 2.

Now, let us compare the number of the parameters in the high and the low energy

physics. The number of real parameters included in the light neutrino masses and the

mixing matrix is seven; two neutrino masses, three mixing angles, and two phases. This

is less than the number of the parameters included in � which adds up to nine after

eliminating the three phases by rotating `L and ēR.

To see how the two excessive parameters in � are hidden in the light neutrino mass

matrix in Eq. (2), it is transparent to write a generic solution of Eq. (2) by introducing a

complex matrix R [12, 8],

� =
1

v
M1/2

R Rm̄1/2
⌫ U †

MNS , (6)

where R is given by

R =

✓
0 cos z � sin z
0 sin z cos z

◆
, (7)

for the normal neutrino mass hierarchy and

R =

✓
� sin z cos z 0
cos z sin z 0

◆
, (8)

for the inverted neutrino mass hierarchy. These expressions show that a complex param-

eter z accounts for the di↵erence of the number of the parameters in the high and the

5

A complex redundant parameter z :
[ Normal Hierarchy : m̄ν1 =0 ] [ Inverted Hierarchy : m ̄ν3 =0 ]



Seesaw Mechanism with Occam’s Razor
Minimal Yukawa Structure ? (in diagonalized mass bases) 

experiments. The errors shown above are the 1� ranges from the best fit values of each

parameter. In the above lists, NH denotes the normal neutrino mass hierarchy, and IH

the inverted neutrino mass hierarchy.

Now, let us try to carve the Yukawa coupling constant � by Occam’s razor further.

For that purpose, let us first remind ourselves that we need at least one CP -phase in

Eq. (1) which is required for successful leptogenesis [16]. For the non-vanishing CP -phase,

the minimal choice is given by,

� =

✓
a 0 0
b 0 0

◆
, (13)

with arbitrary exchanges of the columns and rows. Notice that the one phase out of two

phases of the complex parameters a and b can be eliminated by the phase rotations of the

charged leptons, `L and ēR. Unfortunately, however, this possibility has been excluded

since it leads to no neutrino mixing angles and two massless neutrinos, which contradict

with observations in Eq. (12). Similarly, the next minimum model for the non-vanishing

CP -phase,

� =

✓
a a0 0
b 0 0

◆
, (14)

with an additional complex parameter a0 is not acceptable either, since it leads to two-

vanishing neutrino mixing angles.

Therefore, we need one more complex parameter in �, or in other words, we need a

Yukawa coupling matrix with two texture zeros. In this case, we have four non-vanishing

elements in � and expects one non-vanishing CP -phase after eliminating the three phases

by rotating the charged leptons, `L and ēR.1 Interestingly, the Yukawa coupling � with

two texture zeros for nN = 2 has five free real valued parameters which correspond

to the minimum necessary number of parameters to fit the five observed parameters in

Eqs. (11) and (12). We should emphasize that the model has only one CP -phase in the five

parameters. Thus, the CP -asymmetry required for leptogenesis and the CP -asymmetry

in the neutrino oscillations are related with each other [7] (see discussions in sec. 6).

1Here, we are assuming that � has no column in which both the elements are vanishing since it again
leads to the two vanishing neutrino mixing angles.

7

+
+

only one massive neutrino...

only one neutrino mixing angle...

experiments. The errors shown above are the 1� ranges from the best fit values of each

parameter. In the above lists, NH denotes the normal neutrino mass hierarchy, and IH

the inverted neutrino mass hierarchy.

Now, let us try to carve the Yukawa coupling constant � by Occam’s razor further.

For that purpose, let us first remind ourselves that we need at least one CP -phase in

Eq. (1) which is required for successful leptogenesis [16]. For the non-vanishing CP -phase,

the minimal choice is given by,

� =

✓
a 0 0
b 0 0

◆
, (13)

with arbitrary exchanges of the columns and rows. Notice that the one phase out of two

phases of the complex parameters a and b can be eliminated by the phase rotations of the

charged leptons, `L and ēR. Unfortunately, however, this possibility has been excluded

since it leads to no neutrino mixing angles and two massless neutrinos, which contradict

with observations in Eq. (12). Similarly, the next minimum model for the non-vanishing

CP -phase,

� =

✓
a a0 0
b 0 0

◆
, (14)

with an additional complex parameter a0 is not acceptable either, since it leads to two-

vanishing neutrino mixing angles.

Therefore, we need one more complex parameter in �, or in other words, we need a

Yukawa coupling matrix with two texture zeros. In this case, we have four non-vanishing

elements in � and expects one non-vanishing CP -phase after eliminating the three phases

by rotating the charged leptons, `L and ēR.1 Interestingly, the Yukawa coupling � with

two texture zeros for nN = 2 has five free real valued parameters which correspond

to the minimum necessary number of parameters to fit the five observed parameters in

Eqs. (11) and (12). We should emphasize that the model has only one CP -phase in the five

parameters. Thus, the CP -asymmetry required for leptogenesis and the CP -asymmetry

in the neutrino oscillations are related with each other [7] (see discussions in sec. 6).

1Here, we are assuming that � has no column in which both the elements are vanishing since it again
leads to the two vanishing neutrino mixing angles.

7

+ only two neutrino mixing angles...

○
λ =

(
a a′ 0
b b′ 0

)

λ =
(

a a′ 0
b 0 b′

)
λ =

(
a 0 0
b b′ b′′

)
...

Seesaw Mechanism

λiα

yαβ
Mi

5 = (8-3)
3
2

Low energy theory

yαβ
Mi

3
2

m̄νi 2
UMNS 5 = 3 + 1 + 1

<

→ we have non-trivial predictions on UMNS  and m̄νi .
[’02 Frampton, Glashow, Yangagida, ’02 Raidal, Strumia, ’04 Ibarra, Ross  ]



Seesaw Mechanism with Occam’s Razor
Do they reproduce the observed 5 parameters ?

low energy theory. In the following discussion, we parametrize the Yukawa interaction �

in terms of m̄⌫ , MR, UMNS and z using Eq. (6).

Before closing this section, let us write down the elements of � explicitly. For the

normal neutrino mass hierarchy, the elements are given by

�1↵ =
1

v

p
M1(

p
m2 U

⇤
↵2 cz �

p
m3 U

⇤
↵3 sz) ,

�2↵ =
1

v

p
M2(

p
m2 U

⇤
↵2 sz +

p
m3 U

⇤
↵3 cz) , (9)

and they are given by

�1↵ =
1

v

p
M1(

p
m2 U

⇤
↵2 cz �

p
m1 U

⇤
↵1 sz) ,

�2↵ =
1

v

p
M2(

p
m2 U

⇤
↵2 sz +

p
m1 U

⇤
↵1 cz) , (10)

for the inverted neutrino mass hierarchy (↵ = 1�3). Here, again, we have abbreviated the

sine and the cosine of z by sz = sin z and cz = cos z. It should be noted that the masses

of the right-handed neutrinos can be absorbed by �’s by rescaling �i↵ ! �i↵/
p
Mi. Thus,

the right-handed neutrino masses are redundant to reproduce the light neutrino masses

and the mixings.

3 Models with Two Texture Zeros

To this date, the five parameters out of the seven parameters in the neutrino masses and

mixings have been measured which are summarized as [13],

�m2
21 = 7.59+0.20

�0.18 ⇥ 10�5 eV2 , �m2
31 = 2.45+0.09

�0.09 ⇥ 10�3 eV2 (NH) ,

�m2
31 = �2.34+0120

�0.09 ⇥ 10�3 eV2 (IH) , (11)

for the squared mass di↵erences, and

sin2 ✓12 = 0.312+0.017
�0.015 , sin2 ✓23 = 0.51+0.06

�0.06 (NH) , sin2 ✓13 = 0.023+0.004
�0.004 ,

sin2 ✓23 = 0.52+0.06
�0.06 (IH) , (12)

for the mixing angles. The measurement of sin2 ✓13 is from Daya Bay [3], and we do not

attempt to combine the measurements of sin2 ✓13 at T2K [14], MINOS [15] and RENO [4]
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in terms of m̄⌫ , MR, UMNS and z using Eq. (6).
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sine and the cosine of z by sz = sin z and cz = cos z. It should be noted that the masses

of the right-handed neutrinos can be absorbed by �’s by rescaling �i↵ ! �i↵/
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the right-handed neutrino masses are redundant to reproduce the light neutrino masses

and the mixings.
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�0.09 ⇥ 10�3 eV2 (NH) ,
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�0.09 ⇥ 10�3 eV2 (IH) , (11)

for the squared mass di↵erences, and
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�0.015 , sin2 ✓23 = 0.51+0.06

�0.06 (NH) , sin2 ✓13 = 0.023+0.004
�0.004 ,

sin2 ✓23 = 0.52+0.06
�0.06 (IH) , (12)

for the mixing angles. The measurement of sin2 ✓13 is from Daya Bay [3], and we do not

attempt to combine the measurements of sin2 ✓13 at T2K [14], MINOS [15] and RENO [4]
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Mixing Angle :

We put two-zeros in λ

Redundant parameter “z” is &xed.
Two relations on UMNS  and m̄νi .

→ 5 (out of 7) parameters remain in UMNS  and m̄νi !

We have su*cient parameters! 

[’11 Schwetz, M. Tortola and J. W. F. Valle, ’12 Daya Bay]



Seesaw Mechanism with Occam’s Razor
Ex1)  

for �1↵ = �1↵0 = 0 or �2↵ = �2↵0 = 0. For the inverted hierarchy, the condition is given

by,

U↵2 U↵01 = U↵1 U↵02 . (22)

As we will show, however, the models with two texture zeros in the same rows cannot fit

the observed masses and mixing angles consistently.

4 Normal Hierarchy

In this section, we consider the models with two texture zeros in the Yukawa couplings �

for the normal neutrino mass hierarchy. Here, we again emphasize that we are taking the

bases where the Majorana neutrino masses and the charged lepton masses are diagonal.

The following analyses are the updates of the analyses in Refs. [7, 8, 9]. As we will show,

the seesaw mechanism with the minimal number of parameters achieved by two texture

zeros cannot fit all the five neutrino parameters consistently for the normal light neutrino

mass hierarchy.

4.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (NH)

From Eq. (19), the condition of two texture zeros at �1e and �2µ is reduced to,

m3s13s23e
�i(�+↵) +m2s12(c12c23 � ei�s12s13s23) = 0 . (23)

The condition of two texture zeros at �2µ and �1e is identical to this condition. The

imaginary part of the above condition leads to a relation between � and ↵;

sin � = �m3

m2

1

s212
sin ↵̄ , (24)

where we have defined ↵̄ = � + ↵. Thus, by remembering s212 ' 0.31 and m2 ⌧ m3, we

find that the Majorana phase ↵̄ (↵) is restricted to

| sin ↵̄| . 0.055 , (25)

while � can take wide range of values from 0 to 2⇡.
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4.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (NH)
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imaginary part of the above condition leads to a relation between � and ↵;

sin � = �m3
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1

s212
sin ↵̄ , (24)

where we have defined ↵̄ = � + ↵. Thus, by remembering s212 ' 0.31 and m2 ⌧ m3, we

find that the Majorana phase ↵̄ (↵) is restricted to

| sin ↵̄| . 0.055 , (25)

while � can take wide range of values from 0 to 2⇡.
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the seesaw mechanism with the minimal number of parameters achieved by two texture

zeros cannot fit all the five neutrino parameters consistently for the normal light neutrino

mass hierarchy.

4.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (NH)

From Eq. (19), the condition of two texture zeros at �1e and �2µ is reduced to,

m3s13s23e
�i(�+↵) +m2s12(c12c23 � ei�s12s13s23) = 0 . (23)

The condition of two texture zeros at �2µ and �1e is identical to this condition. The

imaginary part of the above condition leads to a relation between � and ↵;

sin � = �m3

m2

1

s212
sin ↵̄ , (24)

where we have defined ↵̄ = � + ↵. Thus, by remembering s212 ' 0.31 and m2 ⌧ m3, we

find that the Majorana phase ↵̄ (↵) is restricted to
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Figure 1: (Left) The predicted range of sin ✓13 for the best fit values of the mass and mixing
parameters in Eqs. (11)-(12) while taking s13 as a free parameter. (Right) The ��2 of the
predicted s13 for � = 0 (red) and � = ⇡ (blue). We also show ��2 obtained at the Daya Bay
experiment as a dashed line.

The real part of the above condition, on the other hand, leads to,

s13 = �m2

m3

c12c23s12
s23(cos ↵̄�m2/m3 s212 cos �)

, (26)

' m2

m3

c12c23s12
s23

' 0.08 . (27)

where we have approximated that (cos ↵̄�m2/m3 s212 cos �) ' �1 in view of Eq. (25) in the

final expression.2 Therefore, we find that the model with two texture zeros at �1e and �2µ

(or at �1µ and �2e) predicts s13 in the range around 0.08 for a given set of four observed

parameters, �m2
21, �m2

31, sin
2 ✓12, sin

2 ✓23 in Eq. (11)-(12). This is an unexpected result

(though already known in Refs. [7, 8, 9]), since the models have five parameters to fit the

five observed data. This over constraint on s13 is associated with the insensitivity of s13

to � due to m3 � m2 (see Eq. (23)). The resulting range of s13 is, however, too small to

be consistent with the direct measurement of s13 in Eq. (12).

In Fig. 1, we show the range of s13 as a function of � for the best fit values of �m2
21,

�m2
31, sin

2 ✓12, sin
2 ✓23. In the figure, we have solved the real and the imaginary part

of the condition Eq. (23) for ↵̄ to obtain s13 as a function of �. The figure shows the

insensitivity of s13 to �. The figure also shows that s13 takes the maximum value at � = 0

and the minimum value at � = ⇡.

In the figure, we also show ��2 of the predicted s13 for given values of �. Here,

we approximated that four parameters �m2
21, �m2

31, sin
2 ✓12, sin

2 ✓23 obey the Gaussian

2We have defined the mixing angles from 0 to ⇡/2.
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5 parameters for any values of α and δ !

A bit small sinθ13 is predicted... → excluded !
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Figure 3: (Left) The relation between sin ✓13 and � for the inverted neutrino mass hierarchy
with two texture zeros �1e = �2µ = 0 and �1µ = �2e = 0. (Right) The relation between sin ✓13
and ↵. In both panels, we swept �m2

21, �m2
31, sin2 ✓12 and sin2 ✓23 within the 2� errors from the

best fit values. The blue horizontal band shows the observed value of sin2 ✓13 (with 2� errors)
at Daya Bay.

which is also inconsistent with the observations.

For ↵ = µ and ↵0 = ⌧ , the condition for two texture zeros is reduced to

c12c13 = 0 . (36)

Thus, the model predicts s12 = 1 or s13 = 1, which are both inconsistent with observations.

5 Inverted Hierarchy

In this section, we consider the models with two texture zeros for the inverted neutrino

mass hierarchy. Unlike the case for the normal neutrino mass hierarchy, we find that the

model can consistently fit the current observations in Eqs. (11) and (12) including sin2 ✓13.

Furthermore, we find that the models predict the CP -phase � to be around � ' ⇡/2 which

can be proved/disproved in the foreseeable future. The e↵ective Majorana neutrino mass

is also predicted around 50meV which is also within reach of future experiments.
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Seesaw Mechanism with Occam’s Razor

Similarly, all the other possibilities in the normal hierarchy
are not consistent with the observed 5 parameters... 

low energy theory. In the following discussion, we parametrize the Yukawa interaction �

in terms of m̄⌫ , MR, UMNS and z using Eq. (6).

Before closing this section, let us write down the elements of � explicitly. For the

normal neutrino mass hierarchy, the elements are given by

�1↵ =
1

v

p
M1(

p
m2 U

⇤
↵2 cz �

p
m3 U

⇤
↵3 sz) ,

�2↵ =
1

v

p
M2(

p
m2 U

⇤
↵2 sz +

p
m3 U

⇤
↵3 cz) , (9)

and they are given by

�1↵ =
1

v

p
M1(

p
m2 U

⇤
↵2 cz �

p
m1 U

⇤
↵1 sz) ,

�2↵ =
1

v

p
M2(

p
m2 U

⇤
↵2 sz +

p
m1 U

⇤
↵1 cz) , (10)

for the inverted neutrino mass hierarchy (↵ = 1�3). Here, again, we have abbreviated the

sine and the cosine of z by sz = sin z and cz = cos z. It should be noted that the masses

of the right-handed neutrinos can be absorbed by �’s by rescaling �i↵ ! �i↵/
p
Mi. Thus,

the right-handed neutrino masses are redundant to reproduce the light neutrino masses

and the mixings.

3 Models with Two Texture Zeros

To this date, the five parameters out of the seven parameters in the neutrino masses and

mixings have been measured which are summarized as [13],

�m2
21 = 7.59+0.20

�0.18 ⇥ 10�5 eV2 , �m2
31 = 2.45+0.09

�0.09 ⇥ 10�3 eV2 (NH) ,

�m2
31 = �2.34+0120

�0.09 ⇥ 10�3 eV2 (IH) , (11)

for the squared mass di↵erences, and

sin2 ✓12 = 0.312+0.017
�0.015 , sin2 ✓23 = 0.51+0.06

�0.06 (NH) , sin2 ✓13 = 0.023+0.004
�0.004 ,

sin2 ✓23 = 0.52+0.06
�0.06 (IH) , (12)

for the mixing angles. The measurement of sin2 ✓13 is from Daya Bay [3], and we do not

attempt to combine the measurements of sin2 ✓13 at T2K [14], MINOS [15] and RENO [4]

6

For the normal hierarchy with m1 = 0, the Yukawa coupling λ 
depends on Uα3 , and two-zero conditions lead to a sharp 
prediction on sinθ13, which contradicts with observations.

Explicit Yukawa coupling in the normal hierarchy



Seesaw Mechanism with Occam’s Razor
Ex2)  

for �1↵ = �1↵0 = 0 or �2↵ = �2↵0 = 0. For the inverted hierarchy, the condition is given

by,

U↵2 U↵01 = U↵1 U↵02 . (22)

As we will show, however, the models with two texture zeros in the same rows cannot fit

the observed masses and mixing angles consistently.

4 Normal Hierarchy

In this section, we consider the models with two texture zeros in the Yukawa couplings �

for the normal neutrino mass hierarchy. Here, we again emphasize that we are taking the

bases where the Majorana neutrino masses and the charged lepton masses are diagonal.

The following analyses are the updates of the analyses in Refs. [7, 8, 9]. As we will show,

the seesaw mechanism with the minimal number of parameters achieved by two texture

zeros cannot fit all the five neutrino parameters consistently for the normal light neutrino

mass hierarchy.

4.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (NH)

From Eq. (19), the condition of two texture zeros at �1e and �2µ is reduced to,

m3s13s23e
�i(�+↵) +m2s12(c12c23 � ei�s12s13s23) = 0 . (23)

The condition of two texture zeros at �2µ and �1e is identical to this condition. The

imaginary part of the above condition leads to a relation between � and ↵;

sin � = �m3

m2

1

s212
sin ↵̄ , (24)

where we have defined ↵̄ = � + ↵. Thus, by remembering s212 ' 0.31 and m2 ⌧ m3, we

find that the Majorana phase ↵̄ (↵) is restricted to

| sin ↵̄| . 0.055 , (25)

while � can take wide range of values from 0 to 2⇡.

9

or 

for �1↵ = �1↵0 = 0 or �2↵ = �2↵0 = 0. For the inverted hierarchy, the condition is given

by,

U↵2 U↵01 = U↵1 U↵02 . (22)

As we will show, however, the models with two texture zeros in the same rows cannot fit

the observed masses and mixing angles consistently.

4 Normal Hierarchy

In this section, we consider the models with two texture zeros in the Yukawa couplings �

for the normal neutrino mass hierarchy. Here, we again emphasize that we are taking the

bases where the Majorana neutrino masses and the charged lepton masses are diagonal.

The following analyses are the updates of the analyses in Refs. [7, 8, 9]. As we will show,

the seesaw mechanism with the minimal number of parameters achieved by two texture

zeros cannot fit all the five neutrino parameters consistently for the normal light neutrino

mass hierarchy.

4.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (NH)

From Eq. (19), the condition of two texture zeros at �1e and �2µ is reduced to,

m3s13s23e
�i(�+↵) +m2s12(c12c23 � ei�s12s13s23) = 0 . (23)

The condition of two texture zeros at �2µ and �1e is identical to this condition. The

imaginary part of the above condition leads to a relation between � and ↵;

sin � = �m3

m2

1

s212
sin ↵̄ , (24)

where we have defined ↵̄ = � + ↵. Thus, by remembering s212 ' 0.31 and m2 ⌧ m3, we

find that the Majorana phase ↵̄ (↵) is restricted to

| sin ↵̄| . 0.055 , (25)

while � can take wide range of values from 0 to 2⇡.
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in the inverted Hierarchy.

A complex relation on UMNS  and m̄νi .

5.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (IH)

For the inverted hierarchy, the condition of two texture zeros is given in Eq. (20), and it

is given for �1e = �2µ = 0 or �1µ = �2e = 0 by,

m1c12(c23s12 + c12s23s13e
i�)�m2s12(c12c23 � s12s23s13e

i�)ei↵ = 0 . (37)

It should be noted that for the inverted hierarchy, the neutrino masses are given by

m1 = (�m2
13)

1/2 and m2 = (�m2
13 + �m2

12)
1/2 which are almost degenerated with each

other. The above condition can be solved for s13 and � as,

s13e
i� = �c12c23s12(m1 � ei↵m2)

s23(m1c212 +m2s212e
i↵)

. (38)

Thus, by remembering m1 ' m2, we find that s13 take a wide range of values for a given

set of �m2
21, �m2

31, sin
2 ✓12, sin

2 ✓23. In fact, the above solution can be approximated by

s13e
i� ' �c12c23s12(1� ei↵)

s23
' i

c12c23s12
s23

⇥ [↵ mod 2⇡] , (39)

for a small ↵ (mod 2⇡) in the limit of m1 = m2. From the final expression, we see that

s13 takes a wide range values, by sweeping ↵. Therefore, all the five observed neutrino

parameters can be consistently provided by the five parameters in the Yukawa coupling

constants � (up to the Majorana right-handed masses).

In Fig. 3, we show a predicted relation between � and s13 for a given set of�m2
21, �m2

31,

sin2 ✓12 and sin2 ✓23. Here, we solved Eq. (38). In the figure, the red band corresponds to

the 2� errors from the best fit values of the above four neutrino parameters. We also show

a predicted correlation between ↵ and s13. From these figures, we find that the model

predicts the Dirac CP -phase � ' ±⇡/2 for s213 ' 0.023, while the Majorana phase ↵ is

rather suppressed, ↵ = ±⇡/10 (mod 2⇡). This result, the large � for a small ↵, may seem

strange in view of Eq. (38) where the phase of the right hand side is coming from ↵. This

peculiar behavior stems from the almost degenerate two neutrino masses, i.e. m1 ' m2,

which leads Eq. (39) where the right hand side is pure imaginary even for a small ↵.3

Thus, in this model, the smallness of ↵ is not related to the smallness of � but related to

the smallness of s13.

3In the exact limit of m1 = m2, the non-vanishing � does not lead to any physical CP -violations,
although we have �m2

21 6= 0 in reality.
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Figure 3: (Left) The relation between sin ✓13 and � for the inverted neutrino mass hierarchy
with two texture zeros �1e = �2µ = 0 and �1µ = �2e = 0. (Right) The relation between sin ✓13
and ↵. In both panels, we swept �m2

21, �m2
31, sin2 ✓12 and sin2 ✓23 within the 2� errors from the

best fit values. The blue horizontal band shows the observed value of sin2 ✓13 (with 2� errors)
at Daya Bay.

which is also inconsistent with the observations.

For ↵ = µ and ↵0 = ⌧ , the condition for two texture zeros is reduced to

c12c13 = 0 . (36)

Thus, the model predicts s12 = 1 or s13 = 1, which are both inconsistent with observations.

5 Inverted Hierarchy

In this section, we consider the models with two texture zeros for the inverted neutrino

mass hierarchy. Unlike the case for the normal neutrino mass hierarchy, we find that the

model can consistently fit the current observations in Eqs. (11) and (12) including sin2 ✓13.

Furthermore, we find that the models predict the CP -phase � to be around � ' ⇡/2 which

can be proved/disproved in the foreseeable future. The e↵ective Majorana neutrino mass

is also predicted around 50meV which is also within reach of future experiments.
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Figure 3: (Left) The relation between sin ✓13 and � for the inverted neutrino mass hierarchy
with two texture zeros �1e = �2µ = 0 and �1µ = �2e = 0. (Right) The relation between sin ✓13
and ↵. In both panels, we swept �m2

21, �m2
31, sin2 ✓12 and sin2 ✓23 within the 2� errors from the

best fit values. The blue horizontal band shows the observed value of sin2 ✓13 (with 2� errors)
at Daya Bay.

which is also inconsistent with the observations.

For ↵ = µ and ↵0 = ⌧ , the condition for two texture zeros is reduced to

c12c13 = 0 . (36)

Thus, the model predicts s12 = 1 or s13 = 1, which are both inconsistent with observations.

5 Inverted Hierarchy

In this section, we consider the models with two texture zeros for the inverted neutrino

mass hierarchy. Unlike the case for the normal neutrino mass hierarchy, we find that the

model can consistently fit the current observations in Eqs. (11) and (12) including sin2 ✓13.

Furthermore, we find that the models predict the CP -phase � to be around � ' ⇡/2 which

can be proved/disproved in the foreseeable future. The e↵ective Majorana neutrino mass

is also predicted around 50meV which is also within reach of future experiments.
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This relation is consistent with data only for                         !δ ! ±π/2
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Seesaw Mechanism with Occam’s Razor
In the inverted hierarchy, we found four consistent possibilities :

In these cases, we have very sharp predictions !

mee ! 47 meV
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Figure 4: (Left) The ��2 of � for �1e = �2µ = 0 and �1µ = �2e = 0. (Right) The ��2 of
mee. In both panels, we approximated that the five observed parameters obey the Gaussian
distributions.

In Fig. 4, we also show ��2 of the predicted CP -phase � by approximating that the

five observed parameters obey the Gaussian distribution with the errors and the central

values in Eq. (11) and (12). The figure shows that the model predicts � ' ⇡/2 very

sharply. It should be noted that such a large CP -phase � can be proven/disproven in the

foreseeable future in the combination of the results of the neutrino oscillation experiments

(see for example [17]).

Since all the five model parameters relevant for the light neutrino masses and mixing

matrix have been determined by the observed neutrino parameters, it is also possible to

predict the rate of the neutrinoless double beta decay. The rate of the neutrinoless double

beta is proportional to the e↵ective Majorana neutrino mass,

mee = |m1U
2
e1 +m2U

2
e2 +m3U

2
e3| . (40)

Here, m3 = 0 for the inverted neutrino mass hierarchy in our case. In Fig. 4, we show

��2 of the predicted mee. The figure shows that the model predicts a rather large value

of mee at around mee '
p

�m2
23 ' 47meV. This value is close to the expected reaches

of the coming experiments of the neutrinoless double beta decay (see e.g. Ref. [18] and

references therein).

Finally, let us explicitly write down the Yukawa coupling constants and the complex

parameter z. For the best fit values of the observed five parameters, we find that the
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Seesaw Mechanism with Occam’s Razor

In passing...

Effect of θ23 Uncertainty
• νe appearance probability also 

depends on the value of θ23

• If θ23 is fixed at values near the 
edge of the current allowed region, 
the fit contours shift

• Future improved measurements of 
θ23 will be important to extract 
information about other oscillation 
parameters (including δCP) in long-
baseline experiments

• A T2K combined νe+νμ analysis 
is underway

T2K Preliminary

Note: these are 1D contours for various 
values of δCP, not 2D contours
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★

★

δ ! π/2 is getting excluded...
δ ! −π/2 is getting favored...??

Combination of the latest T2K and reactor experiments...

Predictions!



Seesaw Mechanism with Occam’s Razor
Implications on Leptogenesis

Neutrino oscillation : Dirac CP-phase δ in UMNS

Leptogenesis : CP-phase of the z in R

They are now interrelated !

meff
ν sin δeff =

∆m2
12

m̃1
Im[c2

z] m̃1 = (λλ†)11
v2

MR
ηB0 ∝

✏1 is opposite for the model with �1µ = �2e = 0. Thus, unfortunately, it is not possible to

predict the sing of � from the known sign of the baryon asymmetry via leptogenesis.

Similarly, for the model with �1e = �2⌧ = 0, the e↵ective neutrino mass and the

CP -asymmetry are given by,

m̃1 = (4.9± 0.1)⇥ 10�2 eV , (62)

and

"1 ' ±(2.0± 0.3)⇥ 10�6

✓
M1

1013 GeV

◆
, (63)

for sign(�) = ±1. Here again, the errors correspond to 1� errors in Eqs. (11) and (12).

Thus, again, we find that the predicted baryon asymmetry is given by,

⌘B0 ' ⌥ 6.5⇥ 10�10 ⇥
✓

M1

6⇥ 1013 GeV

◆
, (64)

for sign(�) = ±1. Therefore, the observed baryon asymmetry can be explained by lepto-

genesis sign(�) = �1 and M1 ' 1013GeV. The correlation between the signs of � and ⌘B0

is again opposite for �1⌧ = �2e = 0.

Finally, let us emphasize the relation between the CP -asymmetry for leptogenesis and

the CP -violations in the neutrino oscillations [7]. As we have seen, the CP -asymmetry

for leptogenesis is proportional to Im [c2z], where tan z is given by using Eqs. (17) and (38),

tan z = e�i↵2 tan ✓12 ⇥
✓
m2

m1

◆1/2

,

tan z = �ei
↵
2 cot ✓12 ⇥

✓
m1

m2

◆1/2

, (65)

for the models with �1e = �2µ = 0 or �1µ = �2e = 0, respectively. The same expressions

of tan z are also obtained for the model with �1e = �2⌧ = 0 or �1⌧ = �2e = 0 by using

Eqs. (17) and (44). The CP -violations in the neutrino oscillations are, on the other hand,

given by the Dirac CP -phase, �, which can be rewritten as a Jarlskog invariant [24],

JCP = Im [Uµ3U
⇤
e3Ue2U

⇤
µ2] = c12c23c

2
13s12s23s13 sin � ' 0.034⇥ sin � . (66)

These two CP -violations are related by Eqs. (38) and (65), which leads to,

Im[c2z] = ±s12c12t23s13 sin � = ± JCP

c213c
2
23

, (67)

21

(plus) :  λe1 = λμ2 = 0, λe1 = λτ2 = 0 (minus) : λe2 = λμ1 = 0, λe2 = λτ1 = 0

The observation of the CP-violation in the neutrino 
oscillation directly probe the CP-violation in Leptogenesis!

=
1

v2

✓
M1(m1|sz|2 +m2|cz|2)

p
M1M2(�m1c⇤zsz +m2s⇤zcz)p

M1M2(�m1czs⇤z +m2szc⇤z) M2(m1|cz|2 +m2|sz|2)

◆
. (55)

The numerator of the CP -asymmetry is also reduced to

��†M�1
R �⇤�T =

1

v4
M1/2

R Rm̄2
⌫R

TM1/2
R ,

=
1

v4

✓
M1(m2

1s
2
z +m2

2c
2
z)

p
M1M2(�m2

1 +m2
2)czszp

M1M2(�m2
1 +m2

2)czsz M2(m2
1c

2
z +m2

2s
2
z)

◆
. (56)

Therefore, the parameters m̃1 and "1 can be expressed by,

m̃1 = (m1|sz|2 +m2|cz|2) , (57)

and

"1 = � 3

16⇡

M1

v

Im[m2
1s

2
z +m2

2c
2
z]

v(m1|sz|2 +m2|cz|2)
. (58)

It should be noted that "1 is proportional to�m2
12, since Im[m2

1s
2
z+m2

2c
2
z] = �m2

12⇥Im[c2z],

and hence, the CP -asymmetry is rather suppressed.

From these expressions, we find that the e↵ective neutrino mass is given by

m̃1 = (4.9± 0.1)⇥ 10�2 eV , (59)

and the CP -asymmetry is given by

"1 ' ±(2.2± 0.3)⇥ 10�6

✓
M1

1013 GeV

◆
, (60)

for sign(�) = ⌥1 for model with �1e = �2µ = 0. Here, the errors correspond to 1� errors

in Eqs. (11) and (12). As a result, the baryon asymmetry is given by,

⌘B0 ' ± 5.9⇥ 10�10 ⇥
✓

M1

5⇥ 1013 GeV

◆
, (61)

for sign(�) = ±1. Therefore, we find that the observed baryon asymmetry ⌘B0 = (6.19±
0.15) ⇥ 10�10 [22] can be successfully generated by leptogenesis for sign(�) = +1 and

M1 = O(1013)GeV.6 It should be noted that the correlation between the signs of � and

6 In [23], it has been pointed out that there is a lower bound on s13 sin �, |s13 sin �| & 0.11, for
successful leptogenesis for a small Majorana CP -phase, ↵. In our model, this condition is satisfied due
to the maximal Dirac CP -phase, | sin �| ' 1.

20



Summary

The seesaw mechanism is an attractive framework which 
explains the tiny neutrino masses!
The seesaw mechanism also makes it possible to explain 
the Baryon Asymmetry of the universe via Leptogenesis.

The seesaw mechanism does not give any particular 
predictions on the mixing angles and the masses...

The CP-violation used in Leptogenesis is independent 
from the CP-violation in the neutrino oscillations...

In the spirit of the Occam’s Razor, it is possible to reduce 
the seesaw mechanism down to...

Two right-handed neutrino
Two zeros in the Yukawa coupling λ.



Summary

Once the seesaw mechanism is shaved down to this level...
Surprisingly sharp predictions !

Inverted hierarchy!

mee ! 47 meV

δ ! ±π

2

The CP-phase in the neutrino oscillations directly probes the 
CP-phase in Leptogenesis !

One massless neutrino



Summary

Any physics behind?

�1µ = �2e = 0

NR1 NR2

`Le `Lµ

`L� `L�

`Lµ `Le

Figure 7: An illustrative picture of the extra dimensional realization of two texture zeros.
Here, we are assuming that charged leptons `L and ēR are confined on the branes in the extra
dimensions shown as lines in the figure, while two right-handed neutrinos NR1,2 reside on the
intersections of the branes. We are also assuming that the Higgs boson is not localized on the
branes.

the third right-handed neutrino contributions are vanishing in its heavy mass limit, which

e↵ectively leads to the models with two right-handed neutrinos.

Another but more ambitious possibility is the other limit, i.e. the very light third

right-handed neutrino with the mass in ones to tens keV range [26]. In this case, if the

third right-handed neutrino couples to the other fields very weakly, it may have a lifetime

much longer than the age of universe. Such a “sterile neutrino” is a viable candidate

of dark matter [27].8 Especially, if the third right-handed neutrino is dark matter, the

constraints from X-ray observations have put sever upper limits on the e↵ective mixing

angle ✓ between the light neutrinos and the third right-handed neutrino9 such that ✓2 <

O(10�10) for M3 ' 10 keV for example (see e.g. [30] for details and [31, 32] for reviews).

For this range of the small mixing, the contributions of the third right-handed neutrino to

m⌫ in Eq. (2) is negligible, and hence, the model e↵ectively consists of two-right handed

neutrinos for the seesaw mechanism.
8For models of sterile neutrino dark matter where all the three generations of the right-handed neu-

trinos are below the electroweak scale, see Refs. [28, 29].
9Here, the square of the e↵ective mixing angle is defined by ✓2 = m̃3/M3 where m̃3 is given by Eq. (53)

with the replaced indices from 1 to 3.
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Once the observed δ and mee are found to be consistent with 
our predictions, they can be explained by the “surprisingly 
shaved” seesaw mechanism. 

A higher dimensional realization. 

The charged leptons are on the branes.

The Higgs boson is not localized.

The two right-handed neutrinos reside 
on the intersections. 

This might re!ect the structure of spacetime geometry in 
higher dimensional theories...
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Sakharov three conditions (’67)  

Density operator :  ρ = Σ fn | n >< n |  

i ∂ρ/∂t  + [ ρ, H ] = 0  

Baryon asymmetry :  <nB>(t) = Tr[ ρ(t) B ] with <nB>(0) = 0

For [ H, B ] = 0 :  <nB>(t) = <nB>(0) = 0 

ρ(t) = eiHt ρ e-iHt

For [ H, C ] = 0 :  <nB>(t) = - <nB>(t) → <nB>(t) = 0

For [ H, CP ] = 0 :  <nB>(t) = - <nB>(t) → <nB>(t) = 0

In thermal equilibrium :  Baryon production rate
                = Inverse Baryon production rate

Sakharov #1

Sakharov #2

Sakharov #3

Sakharov three conditions (’67)  



Generic two-zero conditions

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

Now, let us consider the condition for two texture zeros. For the normal neutrino mass

hierarchy, the condition of �1↵ = 0 is given by,

tan z =

p
m2 U⇤

↵2p
m3 U⇤

↵3

, (15)

while the condition �2↵ = 0 is given by,

tan z = �
p
m3 U⇤

↵3p
m2 U⇤

↵2

. (16)

For the inverted neutrino mass hierarchy, they are given by

tan z =

p
m2 U⇤

↵2p
m1 U⇤

↵1

, (17)

and

tan z = �
p
m1 U⇤

↵1p
m2 U⇤

↵2

, (18)

respectively. Thus, the condition for two texture zeros �1↵ = �2↵0 = 0 is given by

m2 U↵2 U↵02 +m3 U↵3 U↵03 = 0 , (19)

for the normal neutrino mass hierarchy, and

m2 U↵2 U↵02 +m1 U↵1 U↵01 = 0 , (20)

for the inverted neutrino mass hierarchy. It should be noted that the models with ↵ = ↵0

again predict two vanishing neutrino mixing angles out of the three mixing angles, which

is inconsistent with the observations. Thus, in the followings, we concentrate ourselves on

the models with ↵ 6= ↵0. It should be also noted that the above conditions do not depend

on the Majorana neutrino masses, which reflects the fact that the Majorana neutrino

masses are redundant for the light neutrino masses as explained in the previous section.

One may consider two texture zeros in the same row. For the normal neutrino mass

hierarchy, the condition is given by,

U↵2 U↵03 = U↵3 U↵02 , (21)

8

for �1↵ = �1↵0 = 0 or �2↵ = �2↵0 = 0. For the inverted hierarchy, the condition is given

by,

U↵2 U↵01 = U↵1 U↵02 . (22)

As we will show, however, the models with two texture zeros in the same rows cannot fit

the observed masses and mixing angles consistently.

4 Normal Hierarchy

In this section, we consider the models with two texture zeros in the Yukawa couplings �

for the normal neutrino mass hierarchy. Here, we again emphasize that we are taking the

bases where the Majorana neutrino masses and the charged lepton masses are diagonal.

The following analyses are the updates of the analyses in Refs. [7, 8, 9]. As we will show,

the seesaw mechanism with the minimal number of parameters achieved by two texture

zeros cannot fit all the five neutrino parameters consistently for the normal light neutrino

mass hierarchy.

4.1 Models with �1e = �2µ = 0 or �1µ = �2e = 0 (NH)

From Eq. (19), the condition of two texture zeros at �1e and �2µ is reduced to,

m3s13s23e
�i(�+↵) +m2s12(c12c23 � ei�s12s13s23) = 0 . (23)

The condition of two texture zeros at �2µ and �1e is identical to this condition. The

imaginary part of the above condition leads to a relation between � and ↵;

sin � = �m3

m2

1

s212
sin ↵̄ , (24)

where we have defined ↵̄ = � + ↵. Thus, by remembering s212 ' 0.31 and m2 ⌧ m3, we

find that the Majorana phase ↵̄ (↵) is restricted to

| sin ↵̄| . 0.055 , (25)

while � can take wide range of values from 0 to 2⇡.
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Generic two-zero conditions

13. Neutrino mixing 43

lepton current in the CC weak interaction Lagrangian, are linear combinations of the LH
components of the fields of three massive neutrinos νj :

LCC = −
g√
2

∑

l=e,µ,τ

lL(x) γα νlL(x) Wα†(x) + h.c. ,

νlL(x) =
3

∑

j=1

Ulj νjL(x), (13.78)

where U is the 3 × 3 unitary neutrino mixing matrix [17,18]. The mixing matrix U can
be parameterized by 3 angles, and, depending on whether the massive neutrinos νj are
Dirac or Majorana particles, by 1 or 3 CP violation phases [40,41]:

U =





c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





× diag(1, ei
α21
2 , ei

α31
2 ) . (13.79)

where cij = cos θij , sij = sin θij , the angles θij = [0, π/2], δ = [0, 2π] is the Dirac CP
violation phase and α21, α31 are two Majorana CP violation phases. Thus, in the case
of massive Dirac neutrinos, the neutrino mixing matrix U is similar, in what concerns
the number of mixing angles and CP violation phases, to the CKM quark mixing matrix.
The presence of two additional physical CP violation phases in U if νj are Majorana
particles is a consequence of the special properties of the latter (see, e.g., Refs. [39,40]) .

As we see, the fundamental parameters characterizing the 3-neutrino mixing are: i)
the 3 angles θ12, θ23, θ13, ii) depending on the nature of massive neutrinos νj - 1 Dirac
(δ), or 1 Dirac + 2 Majorana (δ, α21, α31), CP violation phases, and iii) the 3 neutrino
masses, m1, m2, m3. Thus, depending on whether the massive neutrinos are Dirac or
Majorana particles, this makes 7 or 9 additional parameters in the minimally extended
Standard Model of particle interactions with massive neutrinos.

The neutrino oscillation probabilities depend (Section 13.2), in general, on the neutrino
energy, E, the source-detector distance L, on the elements of U and, for relativistic
neutrinos used in all neutrino experiments performed so far, on ∆m2

ij ≡ (m2
i − m2

j ),
i %= j. In the case of 3-neutrino mixing there are only two independent neutrino mass
squared differences, say ∆m2

21 %= 0 and ∆m2
31 %= 0. The numbering of massive neutrinos

νj is arbitrary. It proves convenient from the point of view of relating the mixing angles
θ12, θ23 and θ13 to observables, to identify |∆m2

21| with the smaller of the two neutrino
mass squared differences, which, as it follows from the data, is responsible for the solar
νe and, the observed by KamLAND, reactor ν̄e oscillations. We will number (just for
convenience) the massive neutrinos in such a way that m1 < m2, so that ∆m2

21 > 0. With
these choices made, there are two possibilities: either m1 < m2 < m3, or m3 < m1 < m2.
Then the larger neutrino mass square difference |∆m2

31| or |∆m2
32|, can be associated with

the experimentally observed oscillations of the atmospheric νµ and ν̄µ and accelerator
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Figure 11. LEFT – Neutrino oscillation parameter allowed region from KamLAND
anti-neutrino data (shaded regions) and solar neutrino experiments (lines). RIGHT –
Result of a combined two-neutrino oscillation analysis of KamLAND and the observed
solar neutrino fluxes. The fit gives ∆m2 = 7.9+0.6

−0.5 × 10−5 eV2 and tan2 θ = 0.40+0.10
−0.07

including the allowed one sigma parameter range. From T. Araki et al. [KamLAND
Collaboration], hep-ex/0406035.

and its elements are, of course, not all independent. It is customary6 to
parameterize U in Eq. (54) with three mixing angles θ12, θ13, θ23 and three
complex phases, δ, ξ, η, defined by

|Ue2|2

|Ue1|2
≡ tan2 θ12;

|Uµ3|2

|Uτ3|2
≡ tan2 θ23; Ue3 ≡ sin θ13e

−iδ, (55)

with the exception of ξ and η, the so-called Majorana CP-odd phases.
These are only physical if the neutrinos are Majorana fermions, and have,
unfortunately, virtually no effect in flavor-changing phenomena.p We have
no idea what their values are or even whether they are physical observables!

In order to proceed unambiguously, it is necessary to define the neutrino
mass eigenstates, i.e., to “order” the neutrino masses. This is most often
done in the following way: m2

2 > m2
1 and ∆m2

12 < |∆m2
13|. In this case,

there are three mass-related observables: ∆m2
12 (positive definite), |∆m2

13|,
and the sign of ∆m2

13. A positive sign for ∆m2
13 implies m2

3 > m2
2 — a

so-called normal mass-hierarchy — while a negative sign for ∆m2
13 implies

m2
3 < m2

1 — a so-called inverted mass-hierarchy. The two distinct neutrino
mass-hierarchies are depicted in Fig. 12. Finally, the data tell us that the

pfor a more detailed discussion of Majorana phases and their physical effects, see, for
example, Ref. 31

+
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In the inverted hierarchy, we found four consistent possibilities :

Yukawa coupling constants are given by,

� =

✓
0.12⇥ e�0.053 i 0 0.028⇥ e1.5 i

0 0.28⇥ e3.0 i 0.29⇥ e�0.12 i

◆
, (41)

and the complex parameter z is given by,

z = 0.98⇥ e�3.1 i . (42)

Here, we have assumed M1 = 1013GeV and M2 = 1014GeV, although they are redundant

for fitting the low energy data. For di↵erent Majorana masses, the Yukawa coupling

constants �1↵ is scaled by (M1/1013 GeV)1/2 and �2↵ by (M2/1014 GeV)1/2.

5.2 Models with �1e = �2⌧ = 0 or �1⌧ = �2e = 0 (IH)

Similarly, the condition for �1e = �2⌧ = 0 or �1⌧ = �2e = 0 is reduced to

m1c12(s12s23 � c12c23s13e
i�)�m2s12(c12s23 + s12c23s13e

i�)ei↵ = 0 , (43)

which can be solved for s13 and � as,

s13e
i� =

c12s12s23(m1 � ei↵m2)

c23(m1c212 +m2s212e
i↵)

' c12s12s23(1� ei↵)

c23
' �i

c12s12s23
c23

⇥ [↵ mod 2⇡] . (44)

Thus again, we find that s13 can take a wide range of values for a given set of �m2
21,

�m2
31, sin

2 ✓12 and sin2 ✓23. Therefore, all the five observed neutrino parameters can be

consistently provided by the five parameters in the Yukawa coupling constants �.

In Fig. 5, we show a predicted relation between � and s13 for given�m2
21, �m2

31, sin
2 ✓12

and sin2 ✓23. We also show a predicted relation between ↵ and s13. As a result, we again

find that the model predicts the CP -phases � ' ±⇡/2 and ↵ ' ±⇡/10. The smallness

of ↵ is again related not to the smallness of � but to the smallness of s13. In Fig. 6, we

also show ��2 of the predicted CP -phase �. The figure shows that the models again

predict � ' ⇡/2 very sharply, which is within the reach of the combination of the results

of the neutrino oscillation experiments.4 In the figure, we also show ��2 of the predicted

e↵ective Majorana neutrino mass mee, which is predicted around mee ' 47meV.

4It should be noted that the predicted � here is slightly smaller than the one for the model with
�1e = �2µ = 0 or �1µ = �2e = 0.
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of the neutrino oscillation experiments.4 In the figure, we also show ��2 of the predicted

e↵ective Majorana neutrino mass mee, which is predicted around mee ' 47meV.

4It should be noted that the predicted � here is slightly smaller than the one for the model with
�1e = �2µ = 0 or �1µ = �2e = 0.
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Figure 5: (Left) The relation between sin ✓13 and � for the inverted neutrino mass hierarchy
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Finally, we again write down the Yukawa coupling constants and the parameter z,

explicitly. At the best fit values of the observed five parameters, we find that the Yukawa

coupling constants are given by,

� =

✓
0.12⇥ e�0.049 i 0.027⇥ e�1.6 i 0

0 0.28⇥ e3.0 i 0.29⇥ e�0.11 i

◆
, (45)

and the complex parameter z is given by,

z = 0.98⇥ e�3.1 i , (46)

which are very close to the results in the previous section. Here, we have again assumed
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Yukawa coupling constants are given by,

� =

✓
0.12⇥ e�0.053 i 0 0.028⇥ e1.5 i

0 0.28⇥ e3.0 i 0.29⇥ e�0.12 i

◆
, (41)

and the complex parameter z is given by,

z = 0.98⇥ e�3.1 i . (42)

Here, we have assumed M1 = 1013GeV and M2 = 1014GeV, although they are redundant

for fitting the low energy data. For di↵erent Majorana masses, the Yukawa coupling

constants �1↵ is scaled by (M1/1013 GeV)1/2 and �2↵ by (M2/1014 GeV)1/2.

5.2 Models with �1e = �2⌧ = 0 or �1⌧ = �2e = 0 (IH)

Similarly, the condition for �1e = �2⌧ = 0 or �1⌧ = �2e = 0 is reduced to

m1c12(s12s23 � c12c23s13e
i�)�m2s12(c12s23 + s12c23s13e

i�)ei↵ = 0 , (43)

which can be solved for s13 and � as,

s13e
i� =

c12s12s23(m1 � ei↵m2)

c23(m1c212 +m2s212e
i↵)

' c12s12s23(1� ei↵)

c23
' �i

c12s12s23
c23

⇥ [↵ mod 2⇡] . (44)

Thus again, we find that s13 can take a wide range of values for a given set of �m2
21,

�m2
31, sin

2 ✓12 and sin2 ✓23. Therefore, all the five observed neutrino parameters can be

consistently provided by the five parameters in the Yukawa coupling constants �.

In Fig. 5, we show a predicted relation between � and s13 for given�m2
21, �m2

31, sin
2 ✓12

and sin2 ✓23. We also show a predicted relation between ↵ and s13. As a result, we again

find that the model predicts the CP -phases � ' ±⇡/2 and ↵ ' ±⇡/10. The smallness

of ↵ is again related not to the smallness of � but to the smallness of s13. In Fig. 6, we

also show ��2 of the predicted CP -phase �. The figure shows that the models again

predict � ' ⇡/2 very sharply, which is within the reach of the combination of the results

of the neutrino oscillation experiments.4 In the figure, we also show ��2 of the predicted

e↵ective Majorana neutrino mass mee, which is predicted around mee ' 47meV.

4It should be noted that the predicted � here is slightly smaller than the one for the model with
�1e = �2µ = 0 or �1µ = �2e = 0.
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λe2 = λμ1 = 0 (λe1 = λμ2 = 0)

λe2 = λτ1 = 0 (λe1 = λτ2 = 0)

In these cases, we have non-trivial very sharp predictions

                         

mee ! 47 meVδ ! ±π/2

Allowed Yukawa couplings



Putting zero ?

In the quark sector, the Cabbibo angle is a parameter.

Mu =
(

mu 0
0 mc

)
Md =

(
0

√
mdms√

mdms ms

)

The Cabbibo angle can be derived if we put zero in Md !

[ S. Weinberg, HUTP-77-A057, Trans.New York Acad.Sci.38:185-201, 1977 ]

→ sinθC = (md/ms )1/2 ~ 0.22 !



Leptogenesis

ε =
Γ[N → " + h] − Γ[N → "† + h†]
Γ[N → " + h] + Γ[N → "† + h†]

! 3
16π

M1

v2

Im[(λmνλT )11]
(λλ†)11

nB

nγ
=

28
79

nB−L

nγ
=

28
79

nL

nγ

∣∣∣∣
NRdecay



P(νμ→νe) ≅ sin22θ13 T1 - α sin2θ13 T2 + α sin2θ13 T3 + α2 T4

     T1 = sin2θ23 sin2[(1-xν)Δ]/(1-xν)2

     T2 = sinδ sin2θ12 sin2θ23 sinΔ sin(xνΔ)/xν sin[(1-xν)Δ]/(1-xν) 

    T3 = cosδ sin2θ12 sin2θ23 cosΔ sin(xνΔ)/xν sin[(1-xν)Δ]/(1-xν) 

    T4 = cos2θ23 sin22θ12 sin2(xνΔ)/xν2

     Δ ≡ Δm231L/4E, α ≡ Δm221/Δm231 ∼1/30, xν ≡ 2√2GFNeE/Δm231

νe appearance


