2023年度後期課題演習A2 オルソポジトロニウムの寿命測定 小野友暉 田中智也本間崚太郎前川幹渡山田雄風渡邉純音

目次

1.概要と理論

2.実験方法

3.実験結果と解析

4.考察

5.結論

1.概要と理論

概要

ポジトロニウム:電子と陽電子が電気的に束縛された状態。

対消滅によってガンマ線を放出する。

オルソポジトロニウムとパラポジトロニウムの二種類

オルソポジトロニウムの寿命を測定し、QEDの結果との一致性を確かめる。

$$C \left| n \gamma
ight
angle = (-1)^n \left| n \gamma
ight
angle
ight|_{
m subscript{subscrip{subscript{subcl}}}}} } n n n n n n n n n n n$$

・パラポジトロニウム (p-Ps) …合成スピン0のシングレット状態。 荷電共役変換で符号反転しない $C |p - Ps \rangle = |p - Ps \rangle$

・オルソポジトロニウム (o-Ps)

…合成スピン1のトリプレット状態。

荷電共役変換で符号反転する

 $C \left| o - Ps \right\rangle = - \left| o - Ps \right\rangle$

理論

エネルギー・運動量保存から、1γへ崩壊することはない。

高次の摂動の寄与は小さいため考慮しない。

p-Psは2γへの崩壊

 \sim

o-Psは3γへの崩壊

理論

ファインマンダイアグラムを用いた摂動計算より

ナトリウムのベータ崩壊による陽電子の放出 ²²Na \rightarrow ²²Ne + e⁺ + v_e

↓ ← プラスチックシンチレータで陽電子を検出

陽電子がシリカパウダー(SiO₂)中の電子と結合しポジトロニウムが生成。

ポジトロニウムが対消滅を起こし、ガンマ線を放出する。

←Nalシンチレータでガンマ線を検出

繰り返す

Рь Рь Рь Рь Рь Рь Рь Рь

上から見たセットアップ

横から見たセットアップ

回路図·時間

回路図

時間のチャート

回路図·時間

時間のチャート

時間/

回路図·時間

TDC:時間計測

ADC:gate内の信号積分値を計測

γ線エネルギー計測のため

ADC1 ADC2 ADC3 TDC0 TDC1 TDC2 TDC3

60917918633928084095409561218619333548084095409521316431813447409580640952128193583392409580740956361801863386808409540952111705188344540958074095211176892139340954095801663170181358679240954095470180188326780740954095

実際のデータ

3.実験結果と解析

生データ② ADC

0keV-ペデスタル

511keV-Ps崩壊時のγ線

1275keV-22Naからのγ線

データの抽出 (TDC cut条件)

TDC較正①

TDCが返す0~4095の整数値を実際の時間に変換した。

方法

二つ同時に発生するNIM信号の片方をTDCのstartに、もう片方をdelayをかけてTDCの stopにいれた。

今回は、37,48,68,105,126nsのdelayをかけてTDCを計測。(delayの時間はオシロス コープで計測)

TimeをTDCの一次関数と仮定。一次関数fittingにより下式のp0,p1を決定。

Time = $p_1 \times (\text{TDC0 count}) + p_0$

$Time = p_1 \times (TDC0 \text{ count}) + p_0$

p_0	p_1
-9.15 ± 1.97	0.241 ± 0.005

poはTQ補正で補正されるため、今回は使用しない。

実験では崩壊時がstartになっているため、 傾きに-1をかける。

^{以降} Time = $-p_1 \times (\text{TDC0 count})$

TDC Value time(count)

ADC較正(1)

ADCが返す0~4095の整数値を実際のエネルギーに変換した。

方法

本実験のADCの生データに0, 511,1275keVに対応するピークが存在(ペデスタル、Ps 崩壊のγ線、²²Naのγ線) ↑gauss fittingを行い、meanをそのエネルギーに対するADCの代表値とする。

EnergyをADCの一次関数と仮定。一次関数fittingにより下式のp0,p1を決定。

Energy = $p_1 \times (ADC \text{ count}) + p_0$

ADC較正② gaussfitting

Energy = $p_1 \times (ADC \text{ count}) + p_0$

p-Ps崩壊のγ線、p-Ps崩壊のγ線の Compton散乱、²²Naのγ線

同時に起こるはずだが、低エネルギーになる ほど遅れて観測

TQ補正③

方法

各シンチレータに対して

1.290±5keVの範囲のデータのTimeに関するヒストグラムを作成、Gauss fittingしてその meanを290keVに対するΔTの代表値とした。

2.上記1の作業を20keVごとに590±5keVまで繰り返した。

(Nal1;290~590keV, Nal2;170~490keV, Nal3;390~610keV)

3.得られたΔT(E)の値をプロットし、TQ補正関数でfittingした。

4.新しく時間をtnew=Time- $\Delta T(E)$ と定義し、以降ではこれを用いた。

TQ補正④

gauss fittingし てエネルギー ごとのΔTの代 表値を決める

$$\Delta T[ns] = \frac{p_0}{(E[keV] - p_1)^{p_2}} + p_3$$

$$\sum_{\substack{nal \text{ TO Graph}\\ nal \text{ TO Order}\\ nal \text{ TO Or$$

TQ補正⑥ 補正後のTime-Energy分布

エネルギーによる時間のずれがなくなった

o-Psの崩壊によるガンマ線は511keV以下→450keV以下のデータを用いた

Timeに対するイベント数分布を

$$\operatorname{count} = p_0 \exp\left(-\frac{t[ns]}{p_1}\right) + p_2$$

でfitting。countが1/e倍になるp1が寿命

Time[ns]

fittingの範囲はo-Psが理論値で40%崩壊している72.5nsから、99%崩壊している654nsまで

TQ補正後の寿命③

理論値142[ns]よりも短い

全てのo-Psが3γへ崩壊するわけ ではない

o-Psがポジトロニウム外の電子と対消滅する、あるいはp-Psに変化し、 2γに崩壊する

→(3γに崩壊せず)o-Psの本来の寿命より早く崩壊

・三種類の反応(以下まとめてPick-off反応と呼ぶ)
 ①Pick-off反応: o-Psの陽電子が周囲の電子と反応
 ②スピン交換反応: o-Psの電子が周囲と交換され、p-Psになる
 ③化学反応: o-Psの電子が奪われ(酸化)、残った陽電子が他の電子と反応

イベントはo-Psによるもの、p-Psに よるもの、Pick-off反応によるもの、 511keV、1274keV、コンプトン散乱 とコンプトン吸収、などの要素で分 類される

それぞれ右のような領域にそれが起こっている。

o-Psは511keV未満のγ線しか出さないことに注意。

[目的]反応5,6の領域からPick-off反応 のコンプトン散乱分の寄与を取り除き、 o-Psの寄与のみを見たい

p-Ps崩壊のγ線がコンプトン散乱される 割合とPick-off反応のγ線がコンプトン散 乱される割合が等しく、時間に依らない →p-Ps崩壊からその割合を求め、領域 5,6のo-Ps崩壊とPick-offのコンプトン散 乱から後者のみを取り除く。式で書くと 下のようなことを行う。

$$N_6 = N_{5,6} - N_5 = N_{5,6} - \frac{N_3}{N_2}N_5$$

崩壊反応はdN/dt=-「Nと書ける N(t):時刻tで残っているo-Ps粒子の数(5,6の崩壊をしたもの) Γ(t):崩壊幅(寿命の逆数) g(t)=-dN/dtが各時間のイベント数に対応→測定できる Northo(t):時刻tlc3yへ崩壊した粒子数 NPick-off(t):時刻tlに2γへ崩壊し、コンプトン散乱をした粒子数 (各時間のイベント数に対応) それぞれに対応する崩壊幅をFortho, FPick-off(それぞれ定数)と書くと、 Northo(t)= Γ orthoN(t), NPick-off(t)= Γ Pick-offN(t) 及び**Г=**Fortho+**F**Pick-offが成り立つ。

よって

$$-\frac{dN}{dt} = N_{Pick-off}(t) + N_{ortho}(t) \\ = \Gamma_{ortho}(1+f(t))N(t)$$
たたごし
 $f(t) = \frac{\Gamma_{Pick-off}(t)}{\Gamma_{ortho}(t)} = \frac{N_{Pick-off}(t)}{N_{ortho}(t)}$
れを形式的に解いた解は
 $N(t) = N(0) \exp\left[-\frac{1}{\tau_{ortho}}\left(t + \int_{0}^{t} f(t')dt'\right)\right]$
Pick-off補正

先の議論(コンプトン散乱の割合)により、 右の式が成り立つ。ここで、 S(t):511keVのピーク以下のイベント数 y(t):511 keVのピーク付近のイベント数 である。 よってS(t), y(t)から以下の式でf(t)が求めら れる。

$$f(t) = \frac{N_{Pick-off}(t)}{N_{ortho}(t)} = \frac{\frac{S(0)}{y(0)}y(t)}{S(t) - \frac{S(0)}{y(0)}y(t)} = \frac{S(0)y(t)}{S(t)y(0) - S(0)y(t)}$$

Pick-off補正

各時刻のイベント数は、g(t)に対応する。これはf(t)を用いて形式 的に表示したN(t)から式を求めることができる。

$$g(t) = -\frac{dN(t)}{dt} = \frac{N(0)}{\tau_{\rm ortho}} \left(1 + f(t)\right) \exp\left[-\frac{1}{\tau_{\rm ortho}} \left(t + \int_0^t f(t')dt'\right)\right]$$

g(t)は測定値であり、f(t)は先ほどの方法で求められる。 結局g(t)をFittingし、そのFittingパラメーターとしてTorthoが求められる。 る。

[f(t)のFittingの方法]

- 1. 0 nsから650 nsまで50 nsごとに±25 nsの幅をとってヒストグラムを作成する。
- 2.0 nsの511 keVのピーク付近でGaussian Fittingを行い、そのmeant=0とのt=0 を求める。
- 3. 各時間毎に511 keVのピーク付近でGaussian Fittingを行い、meant±σt=0以 内のイベントの総数を求め、それをy(t)とする。
- 4. 各時間毎に0 keVから450 keVまでのイベントの総数を数え、S(t)が求まる。 5. 以上を用いて求めたf(t)をプロットし、100 nsから650 nsまでをFittingして関 数形を求める。ただしfitting関数は

$$f(t) = p_0 \exp\left(-\frac{t}{p_1}\right) + p_2$$

Nal1

各時刻のエネルギー領域毎のイベント 数S(t)、y(t)をデータから求める。

結果は右に示した。(代表してNal1のみを 記載しているが、解析は全てに行った)

これらをもとに、各時刻のf(t)が求まる。

y(t)のFittingの様子(Nal1)

・f(t)のFitting S(t),y(t)より、各時刻のf(t)の実験値が求 まる。これを用いて以下のFitting関数で f(t)をFittingした

$$f(t) = p_0 \exp\left(-\frac{t}{p_1}\right) + p_2$$

・結果

NaI	p_0	p_1	p_2
NaI1	3.84	102	0.706
NaI2	- <mark>0.530</mark>	39.3	1.19
NaI3	$2.47 imes 10^3$	8.09×10^5	-2.46×10^3

Nal2

Pick-off補正~f(t)のFitting

Nal2については、右のようにfittingこそで きたものの、poが負になるなど、正しく fittingできたかは怪しかった

予想される原因 S(t)やy(t)を求めるところが上手くいかな かった

Nal3

Pick-off補正~f(t)のFitting

Nal3については、右のようにFitting がまともにできなかった(続くg(t)のFitting はそもそもできなかった)

予想される原因 Nal3のシンチレーターとしての感度が悪 く、o-Psの反応が多い低エネルギー側の 反応が見えにくく(Nal1の下限が約200 keVに対し、Nal3は約400 keV)S(t)が正 しく求まらなかったことに起因すると思わ れる

→以下Nal1,2のみを見る

[g(t)のFittingの方法] 450keV以下のイベント数にg(t)のFittingを行い、Fittingパラメーターとして寿命を 求めるのが最終的な目標である。前述の通り、N(t)の形式解から、

$$g(t) = -\frac{dN(t)}{dt} = \frac{N(0)}{\tau_{\text{ortho}}} \left(1 + f(t)\right) \exp\left[-\frac{1}{\tau_{\text{ortho}}} \left(t + \int_0^t f(t')dt'\right)\right]$$

とg(t)の形式解が求まっている。今f(t)は既に求めたので、f(t)についての積分等 を実行し、定数についてはFittingパラメーターを用いて以下のように表示できる。

$$g(t) = -\frac{dN}{dt} = q_0 \left(p_0 \exp\left(-\frac{t}{p_1}\right) + p_2 + 1 \right) \exp\left[-\frac{1}{q_1} \left(-p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (1+p_2)t\right)\right] + q_2$$

ただしpo,p1,p2は既に求められているf(t)のFittingパラメーターであり、g(t)の
Fittingパラメーターはq0,q1,q2。このうちq1が目的の寿命(Tortho)となる。

•結果

Fittingの様子を右に、求まったFittingパラ メーターを下の表にまとめた。(なおNal3につ いても解析を行ったが、Fittingができなかっ た)

NaI	q_0	q_1	q_2
NaI1	12.1	306	22.9
NaI2	207	173	62.3

求めたい寿命

Pick-off補正~結果

寿命は右のようになった (理論値と比較してある。Nal3はそもそもFittingが できなかった) 後で求めるが、誤差を考慮しても理論値と一致して いるとは言えない結果となった。

NaI	life(ns)
theoretical	142
NaI1	306
NaI2	173

考察 Pick-off補正の改善

• TQ補正において
$$\Delta T[ns] = \frac{p_0}{(E[keV] - p_1)^{p_2}} + p_3$$

 $E = p_1$ で発散
NaII 110 ± 8
NaI2 44.5 ± 2.2

→ノイズの除去も考え 200 [k以下をカットしたものを採用

 Pick-off補正において t = ゆデータ数が他よりも多く、より時間の精度を高くする ため、時間の幅を± 25 nsから± 5 nsに変更した

$$f(t) = \frac{\frac{S(0)}{y(0)}y(t)}{S(t) - \frac{S(0)}{y(0)}y(t)} = \frac{S(0)y(t)}{S(t)y(0) - S(0)y(t)}$$

• これに伴い、t > 0で得られた $S(t), y(t 1/5 \ge 0$ てPick-off補正を行った。

考察 Pick-off補正の改善

・実際の結果に近い寿命が得られた

・Nal2の f(t) のfittingも変更前より妥当な結果となった

変更	寿命 [ns](NaI1)	寿命 [ns](NaI2)
なし	317 ± 44	176 ± 7
あり	134 ± 14	152 ± 7

考察 誤差伝播
誤差を評価する
$$\sigma_{\text{total}} = \sqrt{\sigma_{\text{TDC}}^2 + \sigma_{\text{TQ}}^2 + \sigma_{\text{po}}^2 + \sigma_{\text{fitting}}^2}$$

それぞれの誤差の表式 $\sigma_f = \sqrt{\sum_i \left(\frac{\partial f}{\partial p_i} \sigma_{p_i}\right)^2}$

 $f_{\pm} = f \pm \sigma_f$ を用いて τ_{\pm} を出し、

寿命の誤差
$$\sigma = \max\left(| au_+ - au|, | au_- - au|
ight)$$
fitting範囲を変えてそれぞれを出す

考察 誤差伝播 TDC較正: Time = $-p_1 \times (\text{TDC0 count})$ 寿命fittingの時刻を $t_{\pm} = -(p_1 \pm \sigma_{p_1}) \times (\text{TDC0 count}) - \Delta T(E)$ として T_{+} を求めた TQ補正: $\sigma_{\Delta T} = \sqrt{\sum_{i=0}^{3} \left(\frac{\partial \Delta T}{\partial p_i} \sigma_{p_i}\right)^2}$ とし、寿命fittingの時刻を $t_{\pm} = \text{Time} - (\Delta T(E) \pm \sigma_{\Delta T})$ として *て* 表示めた Pick-off補正: $\sigma_{\text{pickoff}} = \sqrt{\sum_{i=0}^{2} \left(\frac{\partial g(t)}{\partial p_{i}}\sigma_{p_{i}}\right)^{2}}$ として $g(t) \pm \sigma_{\text{pickoff}}$

で寿命fittingして T_{\pm} を求めた

NaI1	τ_+	$ au_{-}$	au	σ
TDC	223	325	306	82.7
TQ	294	114	306	192
Pick-off	317	142	306	163

$$f_{\pm} = f \pm \sigma_f$$

$$f_{\alpha} = f + \alpha \sigma_f \quad (-1 \le \alpha \le 1)$$

T₊ と *T*₋の間に寿命が含まれない場 合が出てくる

$$\sigma = \max_{-1 \le \alpha \le 1} (|\tau_{\alpha} - \tau|)$$

を求める

								Nal2 Lifetime after pickoff 1.000000
考察	誤	差伝播	変更	〔前			requency[events]	h1 Entries 227165 Mean 32.02 Std Dev 125 χ² / ndf 734.8 / 191 p0 28.83 ± 0.75
TDC	寿命	[ns]	TQ	寿命	[ns]	Pick-off	ت ب ب 10 ³	p1 655.3 ± 45.4 p2 54.88 ± 1.60
α	NaI1	NaI2	α	NaI1	NaI2	α	Na	
-1.00	325	192	-1.00	114	149	-1.00	102	2
-0.71	297	187	-0.71	178	159	-0.71	1 _1	- 00 0 100 200 300 400 500 600 700 800 Time[ns]
-0.43	288	181	-0.43	238	164	-0.43	98.4	524
-0.14	291	173	-0.14	279	166	-0.14	305	309
0.00	306	171	0.00	306	171	0.00	306	171
0.14	284	165	0.14	284	170	0.14	307	271
0.43	274	156	0.43	247	176	0.43	311	450
0.71	246	145	0.71	289	182	0.71	314	585 NaI1 · $\sigma = 207$
1.00	223	133	1.00	294	183	1.00	317	655 10a11 . 0 – 291
$\sigma_{ m TDC}$	83	38	$\sigma_{ m TQ}$	192	22	$\sigma_{ m Pick-off}$	208	484 NaI2 : $\sigma = 486$

考察 誤差伝播 変更後

TDC	寿命	[ns]	TQ	寿命 [ns]		Pick-off	寿命 [ns]		
α	NaI1	NaI2	α	NaI1	NaI2		α	NaI1	NaI2
-1.00	144	174	-1.00	51.7	133		-1.00	148	209
-0.71	133	169	-0.71	82.3	142		-0.71	143	193
-0.43	130	163	-0.43	108	146		-0.43	139	177
-0.14	129	155	-0.14	124	148		-0.14	136	161
0.00	135	155	0.00	135	155		0.00	135	155
0.14	126	148	0.14	126	152		0.14	134	145
0.43	122	139	0.43	113	159		0.43	132	125
0.71	112	129	0.71	130	165		0.71	130	54.5
1.00	102	119	1.00	131	166]	1.00	129	49.7
$\sigma_{ m TDC}$	33	36	$\sigma_{ m TQ}$	83	21		$\sigma_{ m Pick-off}$	13	105

NaI1 : $\sigma = 93$

考察 誤差伝播

トータルの誤差

変更前	寿命 [ns]
NaI1	306 ± 297
NaI2	171 ± 486

考察 寿命fittingの下限

これまで寿命のfittingの範囲は、理論上 o-Psが40%崩壊する72.5 ns から、99% 崩壊する654 ns としていたが、下限値を 変化させると寿命も大きく変化

下限値を30%崩壊する50.7 nsと、50%崩壊する98.4 nsとした場合についても考える

考察 寿命fittingの下限 50.7 ns 変更前

TDC	寿命	[ns]		TQ	寿命 [ns]		TQ 寿命 [ns]		寿命 [ns] Pick		Pick-off	寿命 [ns]	
α	NaI1	NaI2		α	NaI1	NaI2		α	NaI1	NaI2			
-1.00	321	146		-1.00	63.6	62.6		-1.00	99.9	61.7			
-0.71	283	137		-0.71	68.3	77.9		-0.71	90.1	58.4			
-0.43	264	126		-0.43	90.7	90.2		-0.43	75.8	53.7			
-0.14	215	113		-0.14	156	99.9		-0.14	206	45.1			
0.00	200	117		0.00	200	117		0.00	200	117			
0.14	171	97.1		0.14	225	109		0.14	195	375			
0.43	132	75.7		0.43	268	120		0.43	186	559			
0.71	81.9	51.1		0.71	302	128		0.71	179	580			
1.00	57.9	34.9		1.00	301	133		1.00	173	587			
$\sigma_{ m TDC}$	142	82]	$\sigma_{ m TQ}$	136	55		$\sigma_{ m Pick-off}$	124	470			

NaI1 :
$$\sigma = 233$$

考察 寿命fittingの下限 50.7 ns 変更後

TDC	寿命	[ns]	TQ	寿命 [ns]			Pick-off	寿命	[ns]
α	NaI1	NaI2	α	NaI1	NaI2		α	NaI1	NaI2
-1.00	131	149	-1.00	27.8	77.5		-1.00	120	186
-0.71	118	138	-0.71	29.4	86.4		-0.71	112	167
-0.43	112	128	-0.43	38.4	95.0		-0.43	103	148
-0.14	92.9	114	-0.14	67.6	103		-0.14	93.0	125
0.00	86.8	109	0.00	86.8	109		0.00	86.8	109
0.14	74.3	99.6	0.14	96.5	112		0.14	78.4	41.4
0.43	56.6	85.0	0.43	112	120		0.43	33.8	59.0
0.71	34.5	68.0	0.71	124	128		0.71	35.0	56.9
1.00	24.8	54.5	1.00	123	133	J	1.00	27.1	21.7
$\sigma_{ m TDC}$	62.0	54	$\sigma_{ m TQ}$	59.0	31		$\sigma_{ m Pick-off}$	59.7	87

NaI1 : $\sigma = 104.6$

考察 寿命fittingの下限 98.4 ns 変更前

TDC	寿命	[ns]	TQ	寿命	[ns]		Pick-off	寿命	寿命 [ns]	
α	NaI1	NaI2	α	NaI1	NaI2]	α	NaI1	NaI2	
-1.00	429	186	-1.00	248	193		-1.00	158	276	
-0.71	370	184	-0.71	267	197		-0.71	139	240	
-0.43	389	188	-0.43	300	201		-0.43	113	200	
-0.14	408	190	-0.14	349	191		-0.14	355	168	
0.00	359	194	0.00	359	194		0.00	359	194	
0.14	340	192	0.14	380	192		0.14	364	221	
0.43	323	191	0.43	310	192		0.43	373	265	
0.71	285	189	0.71	371	190		0.71	382	305	
1.00	254	188	1.00	342	185]	1.00	389	345	
$\sigma_{ m TDC}$	105	9	$\sigma_{ m TQ}$	111	9		$\sigma_{ m Pick-off}$	246	151	

NaI1 : $\sigma = 299$

考察 寿命fittingの下限 98.4 ns 変更後

TDC	寿命	[ns]	TQ	寿命	[ns]		Pick-off	寿命	寿命 [ns]	
α	NaI1	NaI2	α	NaI1	NaI2		α	NaI1	NaI2	
-1.00	185	159	-1.00	123	164		-1.00	174	219	
-0.71	167	157	-0.71	132	168		-0.71	170	202	
-0.43	173	160	-0.43	145	172		-0.43	167	187	
-0.14	176	162	-0.14	160	163		-0.14	166	173	
0.00	166	166	0.00	166	166		0.00	166	166	
0.14	158	164	0.14	170	164		0.14	166	159	
0.43	153	163	0.43	147	164		0.43	166	145	
0.71	139	161	0.71	167	162		0.71	166	131	
1.00	126	160	1.00	158	158]	1.00	167	118	
$\sigma_{ m TDC}$	40	8	$\sigma_{ m TQ}$	42	8		$\sigma_{ m Pick-off}$	8	53	

NaI1 : $\sigma = 64$

考察 寿命fittingの下限

- 下限値が小さいほど誤差が大きくなっている
 → p-Psが影響している、またはPick-off反応が多く起こっていた
- すべてのパターンで理論値142 nsが誤差の範囲内に収まっているが、
 誤差が大きく、特に変更前のPick-off補正の場合の方が大きくなっている

変更前	NaI	寿命 [ns]
50.7 mg	NaI1	200 ± 233
50.7 IIS	NaI2	117 ± 480
72 5 mg	NaI1	306 ± 297
72.5 IIS	NaI2	171 ± 486
08.4 mg	NaI1	359 ± 299
98.4 IIS	NaI2	194 ± 152
変更後	NaI	寿命 [ns]
50.7 mg	NaI1	86.8 ± 104.6
50.7 IIS	NaI2	109 ± 107
72.5 mg	NaI1	135 ± 93
72.0 IIS	NaI2	155 ± 114
08.4 mg	NaI1	166 ± 64
90.4 IIS	NaI2	166 ± 55

考察 誤差が大きくなった原因

- 1275 keVのγ線のコンプトン散乱によるバックグラウンドノイズが影響
- シリカパウダーを加熱・乾燥しなかったため、シリカパウダー中の水分による Pick-off反応が多く起こった
- Pick-off補正における各時刻でのGaussian fittingの一部がうまくできなかった
- 装置のセットアップがうまくいっておらず、外部からのノイズが影響

結論

誤差の範囲に寿命の理論値が収まったが、誤差が大きくQEDを保証するような精度に はならなかった。

fittingの下限を変えると寿命も変わった

その理由は考察で挙げたものが考えられる

Back Up fittingの初期パラメータ

TQ補正	ΔΤ	p_0		p_1	-	p_2		p_3		
		7287	7.0	190	.0	0.9) -	827.0		
	Lifetime	p_0		p_1		p_2				
		150.	0	50.0	3	80.0				
Pick-off補正	変更前/	p_0		p_1		p_2		p_0	p_1	
	変更後	100.	0	100.0	C	1.0		5.0	100.0	
	Lifetime	p_0		p_1	p	2				
		2.0	10	0.00	10	0.0				

 p_2

1.0

Back Up fittingの初期パラメータ

誤差伝播を求める際の初期パラメータ

下限值 [ns]	Pick-off 補正	考慮する誤差	NaI	p_0	p_1	p_2
		TDC	NaI1, 2	2	100	10
	亦再並	TQ	NaI1, 2	2	100	10
	変更削 	Pick-off	NaI1	2	100	10
50.7		Pick-off	NaI2	100	300	50
50.7		TDC	NaI1, 2	2	100	10
	亦再么	TQ	NaI1, 2	5	100	10
	多史版	Pick-off	NaI1	2	100	10
		Pick-off	NaI2	100	300	50
		TDC	NaI1, 2	2	100	10
	亦再盖	TQ	NaI1, 2	2	100	10
	変更削	Pick-off	NaI1	2	100	10
		Pick-off	NaI2	100	300	10
72.5		TDC	NaI1	2	100	10
		TDC	NaI2	10	100	10
	変更後	TQ	NaI1, 2	10	100	10
		Pick-off	NaI1	2	100	10
		Pick-off	NaI2	100	300	10
		TDC	NaI1, 2	2	100	10
	亦再並	TQ	NaI1, 2	2	100	10
	変更則 	Pick-off	NaI1	2	100	10
0.0 1		Pick-off	NaI2	100	300	50
98.4		TDC	NaI1, 2	2	100	10
	亦再落	TQ	NaI1, 2	5	100	10
		Pick-off	NaI1	20	150	20
		Pick-off	NaI2	100	150	30

以下、使用しないスライド

考察 誤差伝播

変更前

NaI1	t_+	t_{-}	t	σ
TDC	223	325	306	82.7
TQ	294	114	306	192
Pick-off	317	142	306	163

NaI2	t_+	t_{-}	t	σ
TDC	135	194	173	37.7
ΤQ	185	151	173	21.6
Pick-off	0.309	0.309	173	172

T_ の寿命fitting

f(t)のfittingがうまくできなかったことが原因?

考察 誤差伝播

変更後

NaI1(improved)	t_+	t_{-}	t	σ
TDC	102	144	135	32.6
TQ	131	51.8	134	83.0
Pick-off	129	148	135	13.5

NaI2(improved)	t_+	t_{-}	t	σ
TDC	119	174	153	34.3
TQ	166	133	153	19.8
Pick-off	49.7	209	153	103
トータルの誤差

変更前寿命
$$[ns]$$
NaI1 306 ± 265 NaI2 173 ± 177

考察 寿命fittingの下限

50.7 nsの場合

NaI1	t_+	t_{-}	t	σ	NaI1(improved)	t_+	t_{-}	t	σ
TDC	57.9	321	200	142	TDC	24.8	131	86.8	62.0
TQ	301	63.5	200	136	TQ	123	27.8	86.8	59.0
Pick-off	620	79.4	200	420	Pick-off	27.1	120	86.8	59.7

NaI2	t_+	t_{-}	t	σ	NaI2(improved)	t_+	t_{-}	t	σ
TDC	56.4	162	117	60.8	TDC	54.5	149	117	62.8
TQ	145	81.2	117	36.1	TQ	133	77.5	117	36.1
Pick-off	587	61.7	117	470	Pick-off	21.7	186	117	95.5

考察 寿命fittingの下限

98.4 nsの場合

NaI1	t_+	t_{-}	t	σ
TDC	172	248	226	53.1
TQ	215	170	226	56
Pick-off	363	318	226	138

NaI1(improved)	t_+	t_{-}	t	σ
TDC	126	185	166	40.2
TQ	158	123	166	42.4
Pick-off	167	174	166	8.43

NaI2	t_+	t_{-}	t	σ
TDC	188	186	194	7.54
TQ	185	193	194	8.96
Pick-off	344	276	194	151

NaI2(improved)	t_+	t_{-}	t	σ
TDC	160	159	166	6.70
TQ	158	164	166	7.94
Pick-off	118	219	166	53.1