Compton散乱の検証 2023課題演習A1後期

理論的背景

エネルギーの角度依存性の式

$$\omega' = \frac{\omega}{1 + \frac{\omega}{m}(1 - \cos\theta)}$$

微分断面積の角度依存性の式(クライン仁科の式)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2m^2} \left(\frac{\omega'}{\omega}\right)^2 \left[\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2\theta\right]$$

これらを実験によって確かめる

理論的背景 ~エネルギーの角度依存性の式の導出~ 散乱光子 θ φ 電子 光子 散乱電子

エネルギー保存則と運動量保存則より得られる式から角度Φと電子の運動量pを消去 して次式が得られる。

$$\omega' = \frac{\omega}{1 + \frac{\omega}{m}(1 - \cos\theta)}$$

理論的背景 ~クライン仁科の式の導出~

QEDで確率振幅を摂動展開する

 $\langle f|e^{iH_0t}e^{-iHt}|i\rangle = \langle f|i\rangle + \langle f|e\hat{O}_1(t)|i\rangle + \langle f|e^2\hat{O}_2(t)|i\rangle + \cdots$

1次の摂動は0→2次が主要項.2次の項を具体的に計算して,これを用いて遷移確 率を計算し,微分断面積を計算すればクライン仁科の式を得る.

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2m^2} \left(\frac{\omega'}{\omega}\right)^2 \left[\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2\theta\right]$$

セットアップとデータ取得(青梨)

実験装置の配置

セットアップとデータ取得

実際の画像

セットアップとデータ取得(時間がなければ削る)

LaBr3の平均自由行程の測定

セットアップとデータ取得(時間がなければ削る)

取得したデータ

シンチレータとの距離と計測回数

y:検出数 dist:LaBr3と線源の距離 y=b/(x+a)^2でフィッティング

a~2.56cm (シンチレータの半径)~2.4cm

LaBr3の中心で反応が起こると考えること する

セットアップとデータ取得

セットアップとデータ取得

セットアップとデータ取得

オシロスコープに出力される信号の概形

セットアップとデータ取得(時間が無ければ削る)

ペデスタルの除去

左図の薄い線が引いてある所は ギザギザしており、ペデスタルの 影響がADCの値に現れる ↓ 取得したADC値からペデスタル分を し引いて、意味のある値だけを 取り出す

セットアップとデータ取得(時間が無ければ削る)

除去の方法

クロックジェネレーターで矩形波を(本実験では1 kHzで)出力してペデスタルのADC値を 求める

キャリブレーション(粟田)

※実験から得られるデータはADCの値。

エネルギーとADCカウントの関 係式を求めて、変換する必要が ある。

前提として、

1、Csが662keVでピーク値をとること
 は既知。
 2、関係式は線形であると仮定。

方法

前提(前スライドから)

1、Csが662keVでピーク値をとる。

2、関係式は線形と仮定。

前提からCsが0keVと662keVでとるADCカウントを調べる。

得られた2点の情報から関係式を導出。(E=aX+b)

0keVはCsがない状態(背景放射)での測定。

Fitting (具体例として90°の場合で説明)

Nalシンチレータで662keVをとる時のADCカウントを調べるため、Fittingが必要。

ピーク周りをガウス分布でFittingする。

Fitting

他にもNalの0kev、Labr3の

0kev、662keVに対応する

ADCカウントを調べた。

関係式の導出(E=aX+b)

得られた2点の情報からエネルギーE、ADCの値Xの関係式を導出。

(Nal) E=0.327X-16.7

(LaBr3) E=0.356X-14.4

セシウムの角度を変えて同じ操作を繰り返した。

	Nal		LaBr3	
角度	а	b	а	b
30	0.359	-11.7	0.352	-14.9
60	0.363	-12.2	0.339	-15.1
90	0.327	-16.7	0.356	-14.4
120	0.365	-11.7	0.336	-14.0
150	0.358	-13.0	0.342	-16.2
180	0.354	-17.6	0.337	-20.1

データ解析[エネルギー分布]

図. コンプトン散乱 (90°)における各検出器のヒストグラムと散布図

(a). 30°

(b). 60°

(c). 90°

図. 各角度ごとのエネルギー分布

(d). 120°

(e). 150°

(f). 180°

図. 各角度ごとのエネルギー分布

コンプトン散乱のエネルギーを読み取る (例). Nal 30°でのフィッティング

ガウシアンフィッティング
$$f(x) = ae^{-\frac{(x-\bar{x})^2}{2\sigma^2}}$$

表.エネルギーの角度分布

θ	NaI (keV)	LaBr ₃ (keV)	合計(keV)
30	556.7±2.07	91.5±2.34	648.2±0.41
60	413.2±1.90	248.2±1.41	661.4±0.31
90	276.5±0.95	387.0±1.04	663.5±0.34
120	237.5±1.02	433.5±0.68	671.0±0.24
150	194.6±1.66	462.5±0.70	657.1±0.39
180	171.6±1.54	466.7±1.11	638.3±0.35

データ解析[エネルギー分布]

図.エネルギー角度分布

データ解析[微分断面積](三日月)(理論)

クライン-仁科の式(QEDにより導出)

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2m^2} \left(\frac{\omega'}{\omega}\right)^2 \left[\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2\theta\right]$$
$$\omega' = \frac{\omega}{1 + \frac{\omega}{m}(1 - \cos\theta)}$$

実験結果との比較によってQEDの検証を行う

データ解析[微分断面積](データ取得)

データ解析[微分断面積](データ取得)

compton 90 cut half

データ解析[微分断面積](データ取得)

データ解析[微分断面積](全入射数への換算)

原子への入射: 光電吸収の確立=エネルギーの-3.5乗に比例*

参考文献* 小田切丈.4 放射線と原子分子の相互作用.Radioisotopes.2017,vol.66,no.10,p.417-424.

データ解析[微分断面積](fitting)

クライン-仁科の式で fitting

エネルギー角度分布

理論通りの結果となっている →光の粒子性が確かめられた

散乱確率の角度分布

(実験値の角度分布) =(微分散乱断面積)×C(定数) となるのが理想

最小二乗法でフィッティング

C = 4.262474 $\chi^2 = 3.474109$

何らかの補正が必要 →γ線のエネルギーによって透過率(検出率)が異なる

Nalシンチレータ側の補正

Nalの密度3.67[g/cm2]、長さ5.5[cm]より

$$ightarrow (1-e^{-(rac{\mu}{
ho}) imes 3.67 imes 5.5})^{-1}$$
の補正が必要

再び最小二乗法でフィッティング

カイ二乗値も減少し適切な補正となっている!

中心で散乱しないため、LaBr₃から脱出する距離lが散乱角 θ による

散乱位置の中心からのずれ

LaBr₃の密度5.29g/cm³、662keVのガンマ線に対するコンプトン散乱の 質量減衰定数0.06557cm²/gより散乱位置の期待値*d*は

$$d = \frac{\int_0^{4.8} x e^{-(\frac{\mu}{\rho})\rho x} dx}{\int_0^{4.8} e^{-(\frac{\mu}{\rho})\rho x} dx} \cong 1.76$$

と計算できて、 *l*(θ)と質量減衰係数は右の ようになる

角度θ[deg]		質量減衰係数μ/ρ[cm ² /g]
30	2.939	0.07932
60	2.672	0.1018
90	2.334	0.1431
120	2.029	0.2037
150	1.828	0.2642
180	1.76	0.2902

LaBr₃の密度5.29g/cm³より、以下の関係から、

 $\frac{I}{I_0} = e^{-(\frac{\mu}{\rho})\rho t}$ I:透過光子の数 I_0 :入射光子の数 $\frac{\mu}{\rho}$:質量減衰係数 *ρt*:質量長さ

$$ightarrow e^{\left(rac{\mu}{
ho}
ight) imes 5.29 imes l(heta)}$$
の補正が必要

Nalの補正に加えてさらに補正すると

カイニ乗値が大きく増加し、理論値から遠ざかってしまった

実際にはLaBr3の表面付近で散乱されたものが観測値の大半である可能性

よりよい補正をするためには...

入射光子がコンプトン散乱し、透過する割合は

 $\stackrel{I}{-} = e^{-(\mu_0 l_0 + \mu_1 l_1)}$

I:透過光子の数
 I₀:入射光子の数
 µ₀:入射光子のコンプトン
 散乱減衰係数
 µ₁:散乱後光子の減衰定数
 I₀:入射光子の航行距離
 I₁:散乱後光子の航行距離

→ µ₀l₀ + µ₁l₁ ≤ C(定数)となる LaBr3内の領域の大きさで補正すればよい? →今後の課題に…

エネルギー角度分布 理論通りのグラフが得られ、光の粒子性を確認できた。

散乱頻度の角度分布 Nalシンチレータ側の補正により、理論値に近い値が得られた。 LaBr3シンチレータ側の補正はうまくいかなかったが、Nalシンチレータの補 正で十分近い値が得られていることから、より正確な補正を行ってもその影響は小さいと考える。 以上より、クライン・仁科の式を確かめられた。