2023/3/20 13:00 京都大学 理学部5号館 第4講義室(525号室)

コンプトン散乱の検証

課題演習A1

北出直也・中村七海・堀祐輔・松田和樹

- 1. 概要(中村)
- 2. 理論(中村)
- 3. 実験方法(松田)
- 4. 解析(北出)
- 5. 考察(堀)
- 6. まとめ(堀)

概要と理論(中村)

コンプトン散乱の散乱角ごとのエネルギー分布と断面積の分布が 理論と整合するかを測定した。

波の反射で振動数は変化しない

光は粒子としての性質をもつ。光子のエネルギーと運動 量を

E = h vp = h v / cとして2物体の衝突 問題を計算する。

エネルギー分布

コンプトン散乱の散乱角とエネルギーの関係は

さらに

どの角度が最も反応しやすいのか調べたい。各状態間の遷移を計 算する。→ファインマンダイヤグラムを計算したらよい。

(b)

微分断面積

各角度に対する、反応確率、つまり微分断面積は

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{2m^2} \left[\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2 \theta \right] \tag{1}$$

これが、クライン仁科の式である。これに、、

$$\nu' = \frac{\nu}{1 + \frac{h\nu}{mc^2}(1 - \cos\theta)}$$
(2)

を代入して整理すると、

微分断面積

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = r_0^2 \left[\frac{1}{1 + \alpha'(1 - \cos\theta)} \right]^2 \left[\frac{1 + \cos^2\theta}{2} \right]$$
(3)
$$\cdot \left[1 + \frac{\alpha'^2(1 - \cos\theta)^2}{(1 + \cos^2\theta)[1 + \alpha'(1 - \cos\theta)]} \right]$$
(4)

ただし、この時、 α' は微細構造定数ではなく、 $\alpha' = \omega/m, r_0 = \alpha \lambda/2\pi (\lambda$ は電子のコンプトン波長) である。 また、実際に標的になるのはひとつの電子ではなく、物質の中の電子である。よって、断面積は原子内の電子 が大きくなるほど大きくなると考えられるので、原子番号に比例すると考えて、

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = Zr_0^2 \left[\frac{1}{1 + \alpha'(1 - \cos\theta)} \right]^2 \left[\frac{1 + \cos^2\theta}{2} \right]$$
(5)
$$\cdot \left[1 + \frac{\alpha'^2(1 - \cos\theta)^2}{(1 + \cos^2\theta)[1 + \alpha'(1 - \cos\theta)]} \right]$$
(6)

として、実験結果と比較する。

線源から放射されるγ線とLaBr3シンチレータ内の電子でコンプトン散乱させる

散乱電子のエネルギーを測定

何を測定するのか

gateで指定された区間について シンチレータで受け取った信号を それぞれ積分したもの

これをADCカウントと呼ぶ

シンチレータ 電子のエネルギーを光に変換

光電子増倍管 光を電気信号に変換

→ 電子のエネルギーを電気信号に変換

DIVIDER入力信号と同じ信号を二つ出力する

DISCRIMINATOR 閾値を超えた信号を矩形波に変換する

COINCIDENCE

入力の論理積を出力する

GATE GENERATOR

入力に反応してGATE信号を出力する

ADC Analog-to-Digital Converter.

各シンチレータの波形をGATE信号ごとに積分したデータをPC経由で出力する。

実験結果・解析(北出)

Energy(keV)

ADC

エネルギー較正の手法(662keV)

(例)Nalシンチレータの662keV

¹³⁷Csを線源としたCoincidence

$$\mathbf{G} = ae^{-\frac{(x-b)^2}{2c^2}}$$

662keVはADC値の 1758に対応! 25/48

エネルギー較正の手法(OkeV)

(例)NalシンチレータのOkeV(Pedestalのピーク)

エネルギー較正の結果 誤差について $\sigma = \frac{\sigma_{Gauss}}{\sqrt{N}}$ 662keV 0keV 662keV LaBr₃ 135 ± 46.1 1990 ± 0.930 Nal 130 ± 70.7 1760 ± 1.32 $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$ 0keV (Nはフィッティングに用い たデータ点) 2500 2000 1500 ADC LaBr3 $X = 2.81 \times E + 135$ 1000 -LaBr3 ---Nal 500 Nal $X = 2.46 \times E + 130$ 0 100 700 200 300 400 0 500 600 エネルギー(keV) 27/48

エネルギースペクトルの解析

目的:各角度でのエネルギー値よりコンプトン散乱の正当性を確かめたい!

(例)Nal 30°

ガウシアンでフィッティング

$$G = ae^{-\frac{(x-b)^2}{2c^2}}$$

エネルギーの角度分布

θ (degree)	LaBr3(keV)	Nal(keV)	sum(keV)
30	88.7 ± 0.796	558 ± 1.52	655 ± 0.561
45	171 ± 0.906	476 ± 1.28	659 ± 0.536
60	249 ± 0.967	428 ± 1.07	684 ± 0.563
90	371 ± 0.773	297 ± 0.809	673 ± 0.462
120	431 ± 0.723	231 ± 0.667	666 ± 0.426
150	461 ± 0.619	194 ± 0.502	666 ± 0.465
180	463 ± 1.16	199 ± 1.40	671 ± 1.15

誤差 $\sigma = \frac{\sigma_{Gauss}}{\sqrt{N}}$

エネルギーの角度分布

コンプトン散乱のデータの抽出

目的: 微分散乱断面積($\propto \frac{dN}{dt}$)を求めたい!

コンプトン散乱のイベント数を数える

(例)30°

θ (degree)	データ数(回)	計測時間(t)	dN/dt
30	1143	940.879	1.22
45	1060	1218.278	0.870
60	1117	1509.543	0.740
90	1256	1867.05	0.673
120	1545	2098.527	0.736
150	1321	1676.219	0.788
180	417	560.219	0.744

1.エネルギーの角度分布(再掲)

理論値と実験で得られたデータは概ね一致している

34/48

2. 微分散乱断面積の角度分布

$$\chi^2 = 1199.71229$$

何らかの補正が必要

A.減衰による散乱位置のずれ

x軸上の点xまでγ線が進入する確率 (LaBr₃の密度5.29g/cm³) (入射γ線のエネルギー662KeVに対応する減衰係数0.072cm²/g)

 $\exp(-x \times 5.29 \times 0.072)$

散乱位置の期待値

$$\langle X \rangle = \frac{\int_0^{4.8} x \times \exp(-x \times 5.29 \times 0.072)}{\int_0^\infty \exp(-x \times 5.29 \times 0.072)} \approx 1.4$$

Θ(°)	l(θ) (cm)	減衰係数μ/ρ(cm²/g)
30	3.23	0.079
45	3.04	0.10
60	2.79	0.11
90	2.24	0.13
120	1.78	0.20
150	1.493	0.25
180	1.40	0.27

$$N' = \frac{N}{\exp(-l(\theta) \times 5.29 \times \frac{\mu}{\rho})}$$

補正①によって得られた微分散乱断面積の角度分布

$$C = 11.4650428$$

$$\chi^2 = 2129.04074$$

補正② Nalシンチレータ中での減衰に関する補正

Nalシンチレータをγ線が透過する確率	Θ(°)	減衰係数µ/p(cm²/g)
(Nalの密度3.67g/cm ³)	30	0.013
(Nalの光電吸収の質重減装係数 μ/ρ) (シンチレータの厚さ5.5cm)	45	0.017
	60	0.024

$$1 - \exp(-5.5 \times 3.67 \times \frac{\mu}{\rho})$$

30	0.013
45	0.017
60	0.024
90	0.06
120	0.13
150	0.23
180	0.23

①の補正で得られたカウント数N'の補正の式

$$N'' = \frac{N'}{1 - \exp(-5.5 \times 3.67 \times \frac{\mu}{\rho})}$$

補正②によって得られた微分散乱断面積の角度分布

まとめ(堀)

(1)エネルギー角度分布について

エネルギー角度分布の理論式に概ね一致した。 理論値と実測値のずれの原因としてはシンチレータに幅があるため期待す る角度以外のγ線を含んでいるためだと考えられる。

②微分散乱断面積の角度分布について

Labr₃、Nalシンチレータでのγ線の減衰を考慮することによりχ²の値が小 さくなり、理論式に概ね一致した。理論値と実測値のずれの原因としては上 記の誤差に加え、補正で用いたモデルにずれがあるとかんがえられる。

コンプトン散乱の検証し、光の粒子性を確認することができた。